题意:一家公司每个月都有盈利s或者亏损d。 每连续5个月的总和是亏损的,即1-5,2-6,3-7……8-12一共8组之和都是负数。求一年最高盈利量。
思路:每5个月的总和为亏损,即要尽量将亏损的月份放的靠后一些,又因为要使盈利尽量多,就让亏损的月份最少。
- 假设前4个月盈利后一个月亏损,即12个月可以表示为 111101111011
- 假设前3个月盈利后两个月亏损,即12个月可以表示为 111001110011
1为盈利0为亏损。
即可发现规律 如果每5个月盈利x个月可以保证满足5个月总和是亏损,并且亏损量最小,即有
Sum= s*x*2 + s*(x>=2?2:x) - d*(5-x)2 - d(x>=2?0:(2-x));
如果Sum为负值,则无解。
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
int main(void)
{
int s,d;
while (~scanf("%d %d", &s, &d))
{
int mxsum=0,mx=-1;
for (int i = 0; i <= 5; i++)
{
int sum = 0;
sum = i*s-(5-i)*d;
if (sum<0)
{
if (mxsum==0||mxsum<sum)
{
mxsum=sum;
mx=i;
}
}
}
int S;
S = s*mx*2 + s*(mx>=2?2:mx) - d*(5-mx)*2 - d*(mx>=2?0:(2-mx));
if (S<0)
printf("Deficit\n");
else
printf("%d\n",S);
}
return 0;
}