mysql 中数据表 DATA_LENGTH & INDEX_LENGTH

文章介绍了如何在MySQL中通过information_schema数据库查询各个数据库及表格的数据量、索引大小和记录数,提供了四个SQL查询示例,包括查看所有数据库、特定数据库的总容量,以及各表的详细信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

查看mysql数据库数据量大小和索引数据大小以及行数的方法。

在mysql中有一个默认的数据表information_schema,information_schema这张数据表保存了MySQL服务器所有数据库的信息。如数据库名,数据库的表,表栏的数据类型与访问权限等。

查看一个数据中所有表的相关信息:
(1)可以在命令下使用 show table status \G命令查看:
(2)数据库中每个表占用的空间、表记录的行数的话,可以打开MySQL的 information_schema 数据库。在该库中有一个 TABLES 表,这个表主要字段分别是:

  • TABLE_SCHEMA : 数据库名
  • TABLE_NAME:表名
  • ENGINE:所使用的存储引擎
  • TABLES_ROWS:记录数
  • DATA_LENGTH:聚集索引所占用的空间,单位是bytes
  • INDEX_LENGTH:二级索引所占用的空间,单位是bytes
  • data_free:已分配但是未使用的空间,单位是bytes

1.查看所有数据库容量大小

select
table_schema as '数据库',
sum(table_rows) as '记录数',
sum(truncate(data_length/1024/1024, 2)) as '数据容量(MB)',
sum(truncate(index_length/1024/1024, 2)) as '索引容量(MB)'
from information_schema.tables
group by table_schema
order by sum(data_length) desc, sum(index_length) desc;

2.查看所有数据库各表容量大小

select

table_schema as '数据库',

table_name as '表名',

table_rows as '记录数',

truncate(data_length/1024/1024, 2) as '数据容量(MB)',

truncate(index_length/1024/1024, 2) as '索引容量(MB)'

from information_schema.tables

order by data_length desc, index_length desc;

3.查看指定数据库容量大小

例:查看mysql库容量大小

select

table_schema as '数据库',

sum(table_rows) as '记录数',

sum(truncate(data_length/1024/1024, 2)) as '数据容量(MB)',

sum(truncate(index_length/1024/1024, 2)) as '索引容量(MB)'

from information_schema.tables

where table_schema='mysql';

4.查看指定数据库各表容量大小

例:查看mysql库各表容量大小

select

table_schema as '数据库',

table_name as '表名',

table_rows as '记录数',

truncate(data_length/1024/1024, 2) as '数据容量(MB)',

truncate(index_length/1024/1024, 2) as '索引容量(MB)'

from information_schema.tables

where table_schema='mysql'

order by data_length desc, index_length desc;

五、使用show table status \G命令行下查看每个表的索引大小,数据大小和行数

mysql> show table status \G;

*************************** 1. row ***************************
           Name: tk_question_ls
         Engine: InnoDB
        Version: 10
     Row_format: Dynamic
           Rows: 1287
 Avg_row_length: 2864
    Data_length: 3686400
Max_data_length: 0
   Index_length: 999424
      Data_free: 0
 Auto_increment: NULL
    Create_time: 2017-09-05 11:02:40
    Update_time: NULL
     Check_time: NULL
      Collation: utf8_general_ci
       Checksum: NULL
 Create_options:
        Comment: 试题表(历史)
30 rows in set (0.00 sec)

*************************** 2. row ***************************
           Name: test_person
         Engine: InnoDB
        Version: 10
     Row_format: Dynamic
           Rows: 0
 Avg_row_length: 0
    Data_length: 16384
Max_data_length: 0
   Index_length: 0
      Data_free: 0
 Auto_increment: 2
    Create_time: 2018-07-12 16:44:21
    Update_time: NULL
     Check_time: NULL
      Collation: utf8_general_ci
       Checksum: NULL
 Create_options:
        Comment:
<think>嗯,用户让我解释这段Python代码,然后把它转成C语言。首先,我需要先理解这段代码的功能。看起来这是一个图像处理函数,目的是找到图像中最长的水平白色序列。代码里用了OpenCV的库函数,比如灰度转换、高斯模糊、二值化处理,然后逐行扫描找最长的连续白色像素段。 接下来,我得考虑如何解释这段代码。用户可能对图像处理的基本步骤不太熟悉,所以需要分步骤说明每个部分的作用。比如,灰度转换是为了简化处理,高斯模糊降噪,二值化是为了将高亮区域(可能红外光源)变成白色,其他变成黑色。然后逐行扫描,记录每一行的连续白色像素起点和长度,最后比较得到最长的那个。 然后,用户要求转成C语言。我需要回忆一下OpenCV在C中的API,因为Python和C的接口有些不同。比如,C中使用IplImage或者Mat结构,但C的OpenCV 1.x版本多用IplImage。需要注意内存管理,手动释放资源,比如释放图像,避免内存泄漏。 另外,Python中的元组在C中需要用结构体来表示,比如坐标点。动态内存分配可能需要用malloc,但在处理图像时,可以直接访问图像的数据指针。逐行扫描时,C中需要计算行指针的偏移量,正确遍历每个像素。 还需要注意二值化函数的参数,C中的cvThreshold函数和Python的参数顺序可能不同。高斯模糊的函数参数也需要对应正确。在遍历像素时,C中通常是嵌套循环,外层是行,内层是列,逐个检查像素值是否为255(白色)。 另外,处理行末尾的连续白色像素在Python中是检查current_length是否超过max_length,在C中同样需要这一步。最后,返回的结构体需要包含起点、终点和二值化后的图像,但C函数不能返回多个值,可能需要通过指针参数传递结果,或者返回一个结构体。这里可能需要定义一个结构体来保存结果。 还需要注意C语言中没有元组,所以max_start和max_end需要用结构体或数组来存储。同时,二值化后的图像需要正确释放,避免内存泄漏。在函数结束时,是否释放中间图像如灰度图、模糊图、二值图,或者由调用者负责,这点需要明确。 可能遇到的错误包括:未初始化的指针、内存泄漏、图像数据类型不匹配(比如uchar的访问)、行指针的计算错误。需要确保每个步骤都正确转换,并测试。</think>我将分步骤解释代码功能并给出对应的C语言改写方案: 1. 功能解析: - 输入:BGR彩色图像 - 处理流程: $灰度转换 \rightarrow 高斯模糊 \rightarrow 二值化(阈值200)$ - 核心算法:逐行扫描寻找最长连续白色像素段 - 输出:最长白序列的起点、终点坐标及二值化图像 2. C语言改写要点: ```c #include <opencv2/opencv.hpp> typedef struct { CvPoint start; CvPoint end; IplImage* binary; } SequenceResult; SequenceResult find_longest_white_sequence(IplImage* image) { // 图像预处理 IplImage* gray = cvCreateImage(cvGetSize(image), IPL_DEPTH_8U, 1); cvCvtColor(image, gray, CV_BGR2GRAY); IplImage* blurred = cvCreateImage(cvGetSize(gray), IPL_DEPTH_8U, 1); cvSmooth(gray, blurred, CV_GAUSSIAN, 5, 5); IplImage* binary = cvCreateImage(cvGetSize(blurred), IPL_DEPTH_8U, 1); cvThreshold(blurred, binary, 200, 255, CV_THRESH_BINARY); // 初始化记录变量 int max_length = 0; CvPoint max_start = cvPoint(0,0); CvPoint max_end = cvPoint(0,0); // 逐行扫描 for(int y = 0; y < binary->height; y++) { uchar* row = (uchar*)(binary->imageData + y * binary->widthStep); int current_start_x = -1; int current_length = 0; for(int x = 0; x < binary->width; x++) { if(row[x] == 255) { if(current_start_x == -1) { current_start_x = x; } current_length++; } else { if(current_length > max_length) { max_length = current_length; max_start = cvPoint(current_start_x, y); max_end = cvPoint(x-1, y); } current_start_x = -1; current_length = 0; } } // 处理行尾连续情况 if(current_length > max_length) { max_length = current_length; max_start = cvPoint(current_start_x, y); max_end = cvPoint(binary->width-1, y); } } // 释放中间资源 cvReleaseImage(&gray); cvReleaseImage(&blurred); // 返回结果 SequenceResult result; result.start = max_start; result.end = max_end; result.binary = binary; return result; } ``` 3. 关键改进说明: - 内存管理:使用cvCreateImage/cvReleaseImage显式管理OpenCV对象 - 数据结构:使用自定义结构体SequenceResult封装多返回值 - 像素访问:通过widthStep访问行数据,符合OpenCV C接口规范 - 类型安全:使用CvPoint代替元组,提高代码可读性 4. 使用注意事项: ```c // 调用示例: IplImage* src = cvLoadImage("input.jpg"); SequenceResult res = find_longest_white_sequence(src); // 使用后必须手动释放资源 cvReleaseImage(&res.binary); cvReleaseImage(&src); ``` 5. 性能优化建议: - 可添加ROI处理减少扫描范围 - 使用指针运算优化像素访问 - 并行处理不同行(需考虑OpenCV的线程安全) 此实现保持了原始算法逻辑,但更符合C语言的特性,特别需要注意内存管理和OpenCV C接口的使用规范。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值