数学建模 - 足球队问题

该博客探讨了在37支球队冠军争夺赛中确定比赛场次的数学建模过程,并通过循环模拟验证了算法。文章指出,对于n支球队,需要进行n-1场比赛来决定冠军。此外,还提供了一个C语言程序来计算任意数量球队的比赛场次,揭示了比赛淘汰赛制的内在规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题情境

37支球队进行冠军争夺赛,每两支球队中胜者进入下一轮,直至比赛结束问共进行多少场?如果是n支球队呢

建模分析

37支球队进行比赛,则第一轮有18支球队经过18场比赛晋级,因为一支球队轮空,所以还剩19支球队;第二轮有9支球队经过9场比赛晋级,因为一支球队轮空,所以还剩10支球队;第三轮有5支球队经过5场比赛晋级;第四轮有2支球队经过2场比赛晋级,因为有一支球队轮空,所以还剩3支球队;第五轮有1支球队经过1场比赛晋级,因为有一支球队轮空,所以还剩2支球队;第六轮有1支球队经过1场比赛晋级。共有36场

归纳可得:

当第×轮比赛时,设己经进行 s场比赛,还剩n支球队,则

  • 当n为奇数时,本轮需进行(n-1)/2 场比赛,s=s+(n-1)/2.
  • 当n为偶数时,本轮需进行 n/2场比赛,s=s+n/2

建立循环在计算机上模拟即可验证结果

#include <stdio.h>

int main()
{
    int n ,s = 0;
    scanf("%d",&n);
	while(n>1){
		if(n%2==0){
			s += n/2;
			n /= 2;
		}else{
			s += (n-1)/2;
			n = (n+1)/2;
		}
	}
	printf("%d",s);
    return 0;
}

额外解释

如若不进行枚举找规律,我们可以这么想象,比赛最终只抉出一个冠军球队那么如果一共有n支球队的话,就要淘汰n-1支球队,因为每一场只能淘汰一支球队,所以一共需要进行n-1场比赛。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Violent-Ayang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值