深度学习中五种归一化原理

调用库API实现以及手写实现

import torch 
import torch.nn as nn

batch_szie=2 #sample
time_steps=3
embedding_dim=4 #channel
num_group=2

inputx=torch.randn(batch_szie,time_steps,embedding_dim)# N*L*C
  •  批归一化  BatchNorm1d

## 1. 批归一化 实现batch_norm并验证API  ---- per channel
# NLP: [N,L,C] -> [C]
# CV: [N,C,H,W] -> [C]

batch_norm_op = torch.nn.BatchNorm1d(embedding_dim, affine=False)
bn_y = batch_norm_op(inputx.transpose(-1,-2)).transpose(-1,-2)

#手写batch_norm 
bn_mean=inputx.mean(dim=(0,1),keepdim=True) #.unsqueeze(0).unsqueeze(0).repeat(batch_szie,time_steps,1) #C扩维成 N L C
bn_std=inputx.std(dim=(0,1),unbiased=False,keepdim=True) #.unsqueeze(0).unsqueeze(0).repeat(batch_szie,time_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值