P4240 毒瘤之神的考验

另一种阅读体验?

Description

P ortal. \mathcal{P}\text{ortal.} Portal.

Solution

首先想到要把 φ ( i j ) \varphi(ij) φ(ij) 拆开,这里有个公式

φ ( i j ) = φ ( i ) φ ( j ) gcd ⁡ ( i , j ) φ ( gcd ⁡ ( i , j ) ) \varphi(ij)=\dfrac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))} φ(ij)=φ(gcd(i,j))φ(i)φ(j)gcd(i,j)
考虑证明,有

φ ( i ) φ ( j ) = i ∏ p ∣ i , p ∈ p r i m e p − 1 p ⋅ j ∏ p ∣ j , p ∈ p r i m e p − 1 p = i j ∏ p ∣ i j , p ∈ p r i m e p − 1 p ⋅ ∏ p ∣ gcd ⁡ ( i , j ) , p ∈ p r i m e p − 1 p \begin{aligned} \varphi(i)\varphi(j) &= i\prod\limits_{p|i,p\in \mathtt{prime}}\frac{p-1}{p}\cdot j \prod\limits_{p|j,p\in\mathtt{prime}}\frac{p-1}{p}\\ &= ij\prod\limits_{p|ij,p\in\mathtt{prime}}\frac{p-1}{p}\cdot \prod\limits_{p|\gcd(i,j),p\in\mathtt{prime}}\frac{p-1}{p} \end{aligned} φ(i)φ(j)=ipi,pprimepp1jpj,pprimepp1=ijpij,pprimepp1pgcd(i,j),pprimepp1
也就是 i , j i,j i,j 的并加上 i , j i,j i,j 的交。 接下来进入推柿子环节
∑ i = 1 n ∑ j = 1 m φ ( i j ) = ∑ i = 1 n ∑ j = 1 m φ ( i ) φ ( j ) gcd ⁡ ( i , j ) φ ( gcd ⁡ ( i , j ) ) = ∑ d = 1 n ∑ i = 1 n ∑ j = 1 m φ ( i ) φ ( j ) d [ gcd ⁡ ( i , j ) = d ] φ ( d ) = ∑ d = 1 n d φ ( d ) ∑ i = 1 n ∑ j = 1 m φ ( i ) φ ( j ) [ gcd ⁡ ( i , j ) = d ] = ∑ d = 1 n d φ ( d ) ∑ t = 1 n / d μ ( t ) ⋅ ∑ i = 1 n / ( d t ) ∑ j = 1 m / ( d t ) φ ( i d t ) φ ( j d t ) = ∑ k = 1 n ∑ d ∣ k d ⋅ μ ( k / d ) φ ( d ) ∑ i = 1 n / k φ ( i k ) ∑ j = 1 m / k φ ( j k ) \begin{aligned} \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \varphi(ij) &= \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))} \\&= \sum\limits_{d=1}^{n}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \frac{\varphi(i)\varphi(j)d[\gcd(i,j)=d]}{\varphi(d)} \\&= \sum\limits_{d=1}^{n}\frac{d}{\varphi(d)}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m }\varphi(i)\varphi(j)[\gcd(i,j)=d] \\&= \sum\limits_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{t=1}^{n/d}\mu(t)\cdot \sum\limits_{i=1}^{n/(dt)}\sum\limits_{j=1}^{m/(dt)}\varphi(idt)\varphi(jdt) \\&= \sum\limits_{k=1}^{n}\sum\limits_{d|k} \frac{d\cdot\mu(k/d)}{\varphi(d)} \sum\limits_{i=1}^{n/k }\varphi(ik)\sum\limits_{j=1}^{m/k }\varphi(jk) \end{aligned} i=1nj=1mφ(ij)=i=1nj=1mφ(gcd(i,j))φ(i)φ(j)gcd(i,j)=d=1ni=1nj=1mφ(d)φ(i)φ(j)d[gcd(i,j)=d]=d=1nφ(d)di=1nj=1mφ(i)φ(j)[gcd(i,j)=d]=d=1nφ(d)dt=1n/dμ(t)i=1n/(dt)j=1m/(dt)φ(idt)φ(jdt)=k=1ndkφ(d)dμ(k/d)i=1n/kφ(ik)j=1m/kφ(jk)
f ( k ) = ∑ d ∣ k d ⋅ μ ( k / d ) φ ( d ) , g ( k , n ) = ∑ i = 1 n φ ( i k ) \displaystyle f(k)=\sum\limits_{d|k} \frac{d\cdot\mu(k/d)}{\varphi(d)},g(k,n)=\sum\limits_{i=1}^{n}\varphi(ik) f(k)=dkφ(d)dμ(k/d),g(k,n)=i=1nφ(ik),容易发现这两个函数都容易在调和级数的复杂度内预处理出来。然而 O ( n T ) \mathcal O(nT) O(nT) 仍然是不现实的。如果是 CF 我就直接上了

考虑怎么优化,还是将优化重点放在整除分块上
∑ i = 1 n ∑ j = 1 m φ ( i j ) = ∑ k = 1 n f ( k ) ⋅ g ( k , n / k ) ⋅ g ( k , m / k ) \sum_{i=1}^n\sum_{j=1}^m\varphi(ij)=\sum_{k=1}^nf(k)\cdot g(k,n/k)\cdot g(k,m/k) i=1nj=1mφ(ij)=k=1nf(k)g(k,n/k)g(k,m/k)
h ( a , b , n ) = ∑ k = 1 n f ( k ) ⋅ g ( k , a ) ⋅ g ( k , b ) \displaystyle h(a,b,n)=\sum_{k=1}^nf(k)\cdot g(k,a)\cdot g(k,b) h(a,b,n)=k=1nf(k)g(k,a)g(k,b),于是可以整除分块
∑ i = 1 n ∑ j = 1 m φ ( i j ) = ∑ n / l = n / r ,   m / l = m / r h ( n / r , m / r , r ) − h ( n / r , m / r , l − 1 ) \sum_{i=1}^n\sum_{j=1}^m\varphi(ij)=\sum_{n/l=n/r,\ m/l=m/r}h(n/r,m/r,r)-h(n/r,m/r,l-1) i=1nj=1mφ(ij)=n/l=n/r, m/l=m/rh(n/r,m/r,r)h(n/r,m/r,l1)
问题是,预处理 h h h 的复杂度是很高的,这里可以考虑 根号分治 —— 设定阈值 B B B,将 a , b ⩽ B a,b\leqslant B a,bB h h h 预处理出来,不难发现这是 O ( n B 2 ) \mathcal O(nB^2) O(nB2) 的。当查询的时候,若 n / r ⩽ B n/r\leqslant B n/rB 就直接 O ( 1 ) \mathcal O(1) O(1) 查询,否则有 r ⩽ n / B r\leqslant n/B rn/B,干脆不差分直接暴力算就是 O ( n / B ) \mathcal O(n/B) O(n/B) 的。

复杂度 O ( n ln ⁡ n + n B 2 + ( n 1 / 2 + n / B ) T ) \mathcal O\left(n\ln n+nB^2+\left(n^{1/2}+n/B\right)T\right) O(nlnn+nB2+(n1/2+n/B)T).

块长可以用均值不等式来算,总复杂度算出来大概是 O ( 6 ⋅ 1 0 7 ) \mathcal O(6\cdot 10^7) O(6107).

Code

# include <cstdio>
# include <cctype>
# define print(x,y) write(x), putchar(y)

template <class T>
inline T read(const T sample) {
    T x=0; char s; bool f=0;
    while(!isdigit(s=getchar())) f|=(s=='-');
    for(; isdigit(s); s=getchar()) x=(x<<1)+(x<<3)+(s^48);
    return f? -x: x;
}
template <class T>
inline void write(T x) {
    static int writ[50], w_tp=0;
    if(x<0) putchar('-'), x=-x;
    do writ[++w_tp]=x-x/10*10, x/=10; while(x);
    while(putchar(writ[w_tp--]^48), w_tp);
}

# include <vector>
# include <iostream>
using namespace std;

const int B = 20;
const int maxn = 1e5+5;
const int mod = 998244353;

int inv(int x,int y=mod-2,int r=1) {
    for(; y; y>>=1, x=1ll*x*x%mod)
        if(y&1) r=1ll*r*x%mod; return r;
}

bool is[maxn];
vector <int> g[maxn]; int h[B+1][B+1][maxn];
int phi[maxn], mu[maxn], pc, p[maxn], f[maxn];

int beelzebul(int n,int m) {
    int ans=0; if(n>m) swap(n,m);
    for(int i=1;i<=m/B+1;++i)
        ans = (ans+1ll*f[i]*g[i][n/i]%mod*g[i][m/i]%mod)%mod;
    for(int l=m/B+2, r; l<=n; l=r+1) {
        r = min(n, min(n/(n/l),m/(m/l)));
        ans = (0ll+ans+h[n/r][m/r][r]-h[n/r][m/r][l-1])%mod;
    }
    return (ans+mod)%mod;
}

int func(int i,int a,int b) {
    if(a>=g[i].size() || b>=g[i].size()) return 0;
    return 1ll*f[i]*g[i][a]%mod*g[i][b]%mod;
}

void sieve() {
    phi[1]=mu[1]=1;
    for(int i=2;i<=maxn-5;++i) {
        if(!is[i]) p[++pc]=i,
        mu[i]=-1, phi[i]=i-1;
        for(int j=1; j<=pc && i*p[j]<=maxn-5; ++j) {
            is[i*p[j]] = true, mu[i*p[j]]=-mu[i];
            if(i%p[j]==0) {
                phi[i*p[j]] = phi[i]*p[j];
                mu[i*p[j]]=0; break;
            } phi[i*p[j]] = phi[i]*(p[j]-1);
        }
    }
    for(int i=1;i<=maxn-5;++i) {
        const int coe = 1ll*i*inv(phi[i])%mod;
        g[i].emplace_back(0);
        for(int j=i;j<=maxn-5;j+=i)
            f[j] = (1ll*coe*mu[j/i]+f[j])%mod,
            g[i].emplace_back((g[i][j/i-1]+phi[j])%mod);
    }
    for(int a=1;a<=B;++a) for(int b=1;b<=B;++b) 
        for(int i=1;i<=maxn-5;++i) 
            h[a][b][i] = (h[a][b][i-1]+func(i,a,b))%mod;
}

int main() {
    sieve();
    for(int T=read(9); T; --T) {
        int n=read(9), m=read(9);
        print(beelzebul(n,m),'\n');
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值