第八周项目1:分段函数求值

本文介绍了一个简单的C++程序,用于根据输入的x值计算分段函数的y值,并输出结果。该程序通过if-else条件判断来实现分段函数的计算逻辑。
/*
 【项目1;分段函数求值】
标题:第八周项目1-分段函数求值
问题及代码:
 * Copyright (c) 2014, 烟台大学计算机学院
 * All rights reserved.
 * 文件名称:test.cpp
 * 作    者: 刘斌
 * 完成日期:2014年 10 月 19 日
 * 版 本 号:v1.0
 *。
 * 问题描述:计算函数值并输出.
 * 输入描述:输入一个x.
 * 程序输出:y。
 */
#include <iostream>


using namespace std;


int main()
{
    int x,y;
    cin>>x;
    if(x<1)
        y=-x+1;
    else
        y=x-1;
    cout<<"y="<<y<<endl;
    return 0;
}
房屋与网球场目标检测数据集 一、基础信息 • 数据集名称:房屋与网球场目标检测数据集 • 图片数量: 训练集:273张图片 验证集:75张图片 测试集:92张图片 总计:440张图片 • 训练集:273张图片 • 验证集:75张图片 • 测试集:92张图片 • 总计:440张图片 • 分类类别: House(房屋):常见的住宅建筑类型。 TennisCourt(网球场):用于网球运动的专用场地。 • House(房屋):常见的住宅建筑类型。 • TennisCourt(网球场):用于网球运动的专用场地。 • 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 • 数据来源:来源于航拍或相关图像数据集。 二、适用场景 • 城市规划与土地管理:自动检测房屋和网球场,辅助城市发展分析和土地利用规划。 • 房地产评估与开发:用于识别住宅建筑和体育设施,支持房产估值和项目规划。 • 体育设施监控:监控网球场的分布和状态,优化体育资源管理和维护。 • 航拍图像分析:适用于无人机或卫星图像中的目标检测,提升地理信息系统(GIS)和遥感应用效率。 三、数据集优势 • 标注精准可靠:采用YOLO格式标注,边界框定位准确,确保模型训练的有效性。 • 类别聚焦实用:专注于房屋和网球场两个常见类别,覆盖住宅和娱乐设施,具有实际应用价值。 • 数据划分合理:提供训练集、验证集和测试集,数据量分配科学,支持模型开发与评估。 • 兼容性强:标注格式兼容主流深度学习框架,如YOLO、PyTorch等,便于直接使用和集成。 • 任务适配性高:专为目标检测任务设计,帮助构建高效、准确的AI模型,适用于多种现实场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值