自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

记录、分享、总结、提升。

There is light at the end of the tunnel.不必一直全力奔跑,重要的是,始终要在路上,要在前行。

  • 博客(867)
  • 资源 (197)
  • 问答 (1)
  • 收藏
  • 关注

原创 全15万字丨PyTorch 深度学习实践、基础知识体系全集;忘记时,请时常回顾。

本篇博客介绍的知识是——深度学习之PyThon框架基础。这是深度学习/神经网络的基础,多次回顾,会有不一样的感受。书读百遍,其义自见。

2023-02-20 21:38:08 1895 43

原创 【追光者】2022年终总结,又是一个开始,新的挑战。愿你历尽千帆,归来仍是少年。

Hello!这是我的【2022】年终总结!前前后后写了好几天,可还是有好多想说的话!2022,你有什么收获吗?求点赞!求评论!求转发!求收藏!最后,求个关注呀!!

2023-01-07 23:53:25 2875 18

原创 【人工智能】深度学习算法的底层理论与具体应用场景 || 神经网络、卷积神经网络、循环神经网络、图神经网络、长短期记忆神经网络、自编码器、生成对抗网络

今天,分享一下 【人工智能】深度学习算法的底层理论与具体应用场景,涉及到NN,CNN,RNN,GNN,LSTM,AE,GAN等知识,希望大家喜欢!

2023-01-07 07:15:00 686 6

原创 【毕业设计】答 辩 技 巧 一(以一个过来人的身份,祝各位答辩 过 过 过)

阅读目录写在前面经验总结!(心态方面)本科论文答辩问题(23个常见问题及回答模板)一、软件工程本科论文答辩问题汇总二、如何回答论文答辩中的问题?(问题+回答模板)三、软件工程本科毕业论文答辩前的准备四、软件工程本科毕业论文答辩中的注意事项五、总结计算机专业答辩技巧指导(常见技术问题及解答)一、准备写在前面毕业答辩,应当是计算机专业的学生在本科期间,面临的最后一关了,那么在毕业答辩这一过程中,都有什么需要注意的地方呢?这里我以一个“过来人”的身份,给大家总结一下经验贴!经验总结!(心态方面)首先,你

2022-04-20 09:30:10 6677 7

原创 系列文章之一文纵览机器学习——无监督学习 (算法)(4):PCA (主成分分析) | LSA (潜在语义分析)|NMF (非负矩阵分解)|LLEDA | k-means | 混合高斯分布 |t-SNE

无监督学习是机器学习中的一种训练方式/学习方式,它的本质是一个统计手段,在没有标签的数据里可以发现潜在的一些结构。它不需要给数据打标签,因此没有明确的目的。无监督学习常常被用于数据挖掘,用于在大量无标签数据中发现些什么。 它的训练数据是无标签的,训练目标是能对观察值进行分类或者区分等。简单总结一下,无监督学习是一种机器学习的训练方式,它本质上是一个统计手段,在没有标签的数据里可以发现潜在的一些结构的一种训练方式。本篇简单分享无监督学习的相关知识,具体地,将介绍 8个无监督机器学习算法。

2023-06-07 08:22:56 35

原创 ⑭【动态时空图卷积网络 · 注意力 · 交通速度预测】时空依赖关系挖掘 | 动态时空建模 | 智能交通系统 |

动态时空图卷积网络(Dynamic Spatio-Temporal Graph Convolutional Network)是一种 用于交通速度预测的深度学习模型。它结合了 时空特征和图卷积网络的优势,能够 对交通网络中的时空数据进行建模和预测。该模型的主要特点是 同时考虑了空间和时间信息,以及 对交通网络中节点之间的相邻关系进行建模。具体来说,它使用 卷积神经网络结构来捕捉空间特征,并使用 递归神经网络结构来捕捉时间特征。同时,还使用了 图卷积网络来对交通网络中的节点之间的相邻关系进行建模。

2023-06-05 08:29:09 215

原创 系列文章 之 一文纵览【机器学习】算法(3):线性回归/多项式回归 | 正则化 | 逻辑回归 | 支持向量机SVM | 核方法 | 朴素贝叶斯 | 随机森林 | 神经网络 | KNN(附实例代码)

该系列文章主打简单实用!用尽可能通俗的语言,带读者入门机器学习算法。附带易理解的纯干货代码,让初学者也能对机器学习有更好的理解!涉及到的机器学习基础算法有:线性回归(含多项式回归)、正则化、逻辑回归、支持向量机、核方法、朴素贝叶斯、随机森林、神经网络、KNN等基础的 9个有监督机器学习算法。该系列将持续更新!

2023-06-04 10:29:29 112

原创 ⑬【图神经网络 · 自监督学习 · 时空图】(Preprint类型) | 时空预测 | 城市犯罪预测 | 时空超图 | 多视图时空卷积网络 | 超图对比学习 | 局部时空编码器

时空图神经网络(STGN)是一种用于犯罪预测的深度学习模型。它结合了时空信息和神经网络,以对犯罪活动进行预测和分析。STGN的基本思想是 将时空数据表示为图结构,其中 节点表示地点和时间,边表示节点之间的关系。然后,使用神经网络对图进行编码,从而 学习到犯罪活动的模式和趋势。具体来说,STGN包括两个部分:空间图和时间图。空间图 将地理信息表示为节点和边,时间图 将时间信息表示为节点和边。然后,通过将空间图和时间图合并成一个时空图,就可以对犯罪数据进行建模和预测。

2023-06-01 09:38:06 122

原创 ⑫【图神经网络 · 图增强 · 图表示学习 · 自监督】无增强图表示学习 | 图的对比方法 | 图增强技术 | 无监督图表示学习 | BYOL |

无增强图表示学习是一种机器学习技术,它通过学习节点之间的关系来表示节点本身。在无增强图表示学习中,节点之间的关系是利用图结构信息来学习的,而不需要额外的标签或监督信息。这种方法可以用于节点分类等任务。无增强图表示学习的主要目的是学习节点之间的相似性和差异性,以便更好地理解节点本身。

2023-05-30 07:33:49 249

原创 Python爬虫实战 之【免费下载】百度文库 文档(Word文档、PPT资源){附:完整教程 + 源代码} | 测试chromedriver驱动是否可用 | 安装selenium、docx、pptx

本篇,分享一个Python爬虫案例——以免费 下载网络上的一些付费资源为例。具体地,讲解了如何安装一些下载过程中用到的必备Python模块,并附上 下载chromedriver驱动的具体链接 也给出了其测试用例。此外,还包含部分错误与其解决。本篇包含完整的源代码,大家可以 练习使用。时间所限,还请各位多多谅解!

2023-05-29 19:45:57 235

原创 ⑪【图自监督学习 · 图表示学习 · 图神经网络 · 时空图】链接预测 | 动态图 | 双注意力 | 时间戳 | GNN编码器 | 局部时空演化模式

动态图(Dynamic Graph)是一种能够表示 时间和空间关系的图数据结构。在动态图中,节点和边的信息 可以随着时间的推移而发生变化,从而反映了实体之间的关系随时间变化的演化过程。具体来说,动态图通常由 一个有向图和一个时间戳集合 组成。其中,有向图 用于表示实体之间的关系,而时间戳集合 则用于记录每个节点和边的状态 在不同时间点上的变化情况。在动态图中,每个节点可以表示一个实体,每个边 则表示两个实体之间的关系。同时,动态图还支持添加、删除、修改节点和边的操作,以适应实际应用中数据的变化情况。

2023-05-29 14:29:47 334

原创 ⑩【图神经网络×自监督×时空】视频自监督学习、时间对比图学习、多尺度时间依赖性(长期、短期) 、频域学习

自监督学习可以利用输入数据中的某些特征或结构来生成有意义的表示,而不需要对数据进行显式标注。在深度学习中,自监督学习通常是通过预定义的pretext任务来实现的,例如,自编码器、对比学习、生成模型等。自监督学习旨在从无标签数据中学习到有用的特征,这些特征可以用于后续的有监督任务,例如分类、回归等。这种方法可以有效减少对标注数据的需求,提高模型的泛化能力和鲁棒性。

2023-05-25 16:51:57 384

原创 <4>【深度学习 × PyTorch】一定要掌握的 微积分知识 | d2l简介 | 附 问题解决:正确安装 d2l 模块 | 再遇xxx‘time‘ has no attribute ‘clock‘

本篇,旨在帮助大家快速掌握深度学习中常用的微分知识,同时也附以简单易理解的实例代码,以便于大家练习。需要指出的是,在练习中,需要正确安装d2l模块,这里我详细地给出了如何正确安装d2l模块的方法。其中代码部分,大家可以直接复制练习使用,也可以手动敲一遍,对比后查看是否遇到错误,继而进行更正。最后,也给出了本篇所有代码的下载方式,亦可直接下载后运行练习。

2023-05-25 09:28:03 232

原创 ⑨【自监督学习 · 时空图神经网络 · 文献精读】交通流预测 | 注意力机制 | 时空:spatial-temporal | 信息增强 | GCN | 交通数据的特征

时空图神经网络 是一种用于处理时空数据的神经网络模型,它在交通流预测方面有广泛的应用。传统的交通流预测模型通常使用基于历史数据的回归分析或模式识别方法。这些方法在处理时空数据时通常只能利用数据在时间上的单调变化特性,忽略了对时空相关性的捕捉。而时空图神经网络则通过对时空数据的结构建模,并利用神经网络对时空数据进行非线性变换,从而捕捉数据在时间和空间上的相关性。

2023-05-24 08:17:03 183

原创 【Python从入门到人工智能】14个必会的Python内置函数(9)——实现当前是今年的第几天,本周是今年的第几周(数据格式化处理综合应用)

本篇首先承接上篇,先介绍关于数据格式化处理的一个“小尾巴”:详解python中的格式化字符以及深化进制转换的知识,并给出如何格式化日期和时间的例子。然后开启新篇——即如何查看Python中的帮助信息(内容较为通俗易懂,因此本篇即可介绍完全),最后介绍了 关于“过滤序列”的一些知识,当然,这会是另一个重头戏,因此将会分为几篇介绍。最最后,问一下“文心一言”,让它作一首诗。

2023-05-22 09:37:35 536

原创 ⑧【自监督学习 · 时空图卷积网络 · 文献精读】步态识别 | 姿势估计 | 隐私保护 | 生物识别技术

步态识别和姿势估计是计算机视觉领域中的重要研究方向,利用深度学习技术可以在这一领域取得了很大的进展。在步态识别方面,最新的研究成果包括基于深度学习的步态识别方法,通过自动学习辨别表示的能力,重塑了这一领域的研究格局。基于深度学习的步态识别方法目前在该领域占据主导地位,并且促进了实际应用。在姿势估计方面,深度学习技术也取得了显著的进展。现有的姿势估计方法通常分为两类:基于特征的方法和基于模型的方法。基于特征的方法通常使用单个或多个特征来估计姿势,这些特征通常是在图像中提取的。基于模型的方法通常使用深度学习模型

2023-05-17 15:42:54 479

原创 ⑦ 【自监督 · 文献精读】动作识别 | 时空对比学习 | 动作编码 | GCN | 对比性代理任务 | 对比学习 | 三维动作识别 | 编码 | 特征提取

自监督学习是一种无需外部标记数据或者模型参数的学习方法,而是通过学习样本数据本身来进行自我训练和监督,进而提高模型性能的一种机器学习方法。自监督学习主要应用于以下几个方面:无监督语音识别、计算机视觉、数据挖掘、推荐系统等。在自监督学习中,模型通过对自身训练数据的学习,来发现数据中的结构和特征,并利用这些结构和特征来进行预测或分类等任务。与传统的监督学习相比,自监督学习不需要外部的标记数据或者模型参数,因此具有更高的泛化能力和更小的计算成本。

2023-05-16 16:19:18 607

原创 ⑥【自监督学习 · 时空图神经网络 · 文献精读】知识图谱 | 推荐 | 命名实体识别NER | 空间-时间知识图谱 | 时空知识图 | 时空相似性

时空图神经网络(Spatial Time Graph Neural Network,ST-GNN)是一种用于联合处理时变网络数据的基本时空拓扑的图神经网络结构。它结合了时间和图卷积滤波器,以及逐点非线性激活函数,以实现对时空数据的有效建模。ST-GNN的基本体系结构包括时间和图卷积滤波器,以及逐点非线性激活函数。其中,时间卷积用于对时间序列数据进行建模,而图卷积滤波器用于对图数据进行建模。逐点非线性激活函数用于对每个时间点的数据进行建模,以捕捉输入时间点的局部变化。

2023-05-15 15:36:54 701 1

原创 【Python从入门到人工智能】详解 PyTorch数据读取机制 DataLoader & Dataset(以人民币-RMB二分类实战 为例讲解,含完整源代码+问题解决)| 附:文心一言测试

本篇主要讲述科研中经常用到的PyTorch与“数据”读取相关的知识。例如 如何从硬盘中读取数据,并且对数据进行预处理和数据增强操作,然后转换为张量的形式输入到模型之中等等知识。此外,基于100张1¥和100张100¥,建立了一个分类模型来实现二元分类任务。经过测试,本模型并有良好的准确性。在文末附了本篇完整的code(含数据集与图示分析等)下载地址。希望本篇对各位有帮助,谢谢大家!

2023-05-14 08:49:01 326

原创 ⑤ 【自监督学习 · 图神经网络 · 文献精读】GCN存在的缺陷 | 多任务学习 | 自监督辅助任务 | 图卷积网络 | 半监督图分类任务 | 附:文心一言 测试

GCN(Graph Convolutional Networks) 存在的缺陷有:[1] 批次训练问题:GCN的批次训练方法容易受到数据集大小和批次大小的影响,导致训练速度缓慢。[2] 节点特征维度:GCN 的节点特征维度通常较高,这使得 GCN 在处理长序列问题时表现不佳。[3] 退化问题:GCN 在处理一些复杂图结构时容易出现梯度消失或梯度爆炸的问题,这会导致模型难以训练和调整。[4] 邻居权重问题:GCN 在处理图结构时通常采用对称的拉普拉斯矩阵,这使得它无法适用于有向图。为了解决这个问题...

2023-05-11 08:57:41 275

原创 【深度学习】基于PyTorch & 迁移学习 实现医学影像识别(详细案例分析 + 源代码) | 附:深度学习在医学影像领域的应用

深度学习在医学影像领域的应用有:[1] 医学影像分析:利用深度学习技术对医学影像进行分析,可以提取出影像中的各种信息,如器官形态、病变部位等,从而为医生提供更准确的诊断依据。[2] 疾病诊断:通过深度学习技术对大量的医学影像数据进行训练和学习,可以建立起医学影像与疾病之间的关联模型,从而实现对疾病的准确诊断和分类。[3] 医学影像分割:将医学影像分割成各个部分,可以帮助医生更好地观察和判断病变部位,同时也可以辅助医生进行更精细的手术操作...

2023-05-08 09:14:00 493

原创 深度学习【PyTorch 基础回顾】PyTorch & Tensor 主要特点 | 再次认识 Tensor(张量)| 详细实例讲述 | PyTorch中文文档 | 基于PyTorch实现手写数字识别

PyTorch是一个由 Facebook开发的开源深度学习框架,它最初是为了研究人员和工程师开发的,现在已经成为了广泛使用的深度学习工具。PyTorch的核心设计理念是简化深度学习模型的开发和训练过程,它提供了一套易于使用的API,可以帮助开发者在各种硬件上加速训练和推理过程。本篇将回顾 PyTorch基础。

2023-05-04 08:52:30 238

原创 【PyTorch 深度学习实战】基于RNN & LSTM 实现 MNIST手写数字识别 (附源代码 | 详解) | 附:解决Jupyter无法启动问题No module named‘resource‘

RNN(循环神经网络)和 LSTM(长短时记忆网络)是深度学习中两种不同类型的神经网络。它们都是为了解决一些复杂的任务,如序列到序列的预测、序列到单词的翻译等。RNN主要用于处理序列数据,它有一个时间步长的概念。在每个时间步长内,RNN可以从之前的时间步长中获取信息,并对当前的输入进行计算。这使得RNN能够对长序列进行有效的建模。LSTM主要用于处理连续数据,它结合了 RNN和 CNN的特点。LSTM的输入序列被分成一系列的小段(称为“时间步长”),每个时间步长都被看作是一个记忆单元。这使得 LSTM能够对

2023-05-02 15:40:46 360

原创 ④【自监督学习 · 图神经网络 · 文献精读】计算机八大核心期刊 | (会话) 推荐算法 | 数据增强 | 自监督混合图神经网络 | 多头注意力机制 | 图表示学习 | 超图 | 动态图对比学习

近年来,图神经网络在(会话)推荐领域成为主流,它将基于会话的序列数据建模为图以关注项目之间的转换关系。自监督学习和图神经网络在推荐系统中的应用非常广泛,主要有以下几个方面:冷启动问题、数据稀疏性问题、多标签问题、商品推荐问题以及同步和异步交互问题等(这些将会在正文中体现)| 图表示学习是图学习的核心内容,一般指将节点的属性和结构 嵌入到低维稠密向量空间中,以更好地进行节点分类、链接预测等下游任务。但是基于GNN的图表示学习虽然性能不错,但是依然也是存在缺陷的,本文也将对此阅读相关文献并做说明。

2023-05-01 08:34:41 484 1

原创 <3>【深度学习 × PyTorch】必会 线性代数 (含详细分析):点积 | 矩阵-向量积 | Hadamard积 | 矩阵乘法 | 范数/矩阵范数

【这两节介绍了不少线性代数的基础知识,这是机器学习/深度学习的基础知识。多次回顾,多次练习,会有不同的体验】理解现代深度学习的一门必学的课程——线性代数。 线性代数有很多知识,其中很多数学知识对于机器学习非常有用。 例如,矩阵可以分解为因子,这些分解可以显示真实世界数据集中的低维结构。 机器学习的整个子领域都侧重于使用矩阵分解及其向高阶张量的泛化,来发现数据集中的结构并解决预测问题。 当开始动手尝试并在真实数据集上应用了有效的机器学习模型,你会更倾向于学习更多数学。

2023-04-29 09:13:23 5439

原创 ③【自监督学习 · 图神经网络 · 文献精读】图对比学习 | 图数据增强 | 视频问答 | 预训练技术 | 自监督对比学习方法 | GCN | KL散度

声明:本文仅学习使用。阅读主题主要为人工智能&自监督学习&图神经网络方面的最新文献。本专栏将长期更新人工智能文献阅读的知识以及优秀文献的优秀科研语句,分析,总结,提炼,提升。本次所读文献为中文文献,检索所用平台为“中国知网”。仅从所选文献中摘取对于课题组研究有关的关键语句以及个人认为的亮点语句,所选文献将在文末统一以引用格式指出。

2023-04-27 20:35:36 434 3

原创 <2>【深度学习 × PyTorch】pandas | 数据预处理 | 处理缺失值:插值法 | networkx模块绘制知识图谱 | 线性代数初步

为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始, 而不是从那些准备好的张量格式数据开始。 在Python中常用的数据分析工具中,我们通常使用pandas软件包。像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。 本篇我们将简要介绍使用pandas预处理原始数据,并将原始数据转换为张量格式的步骤。 后续也将介绍更多的数据预处理技术。

2023-04-27 15:51:26 9767 2

原创 带你一文透彻学习【PyTorch深度学习实践】分篇—— 卷积神经网络CNN(高级篇)| 附:完整实例源代码 | 手把手教你如何在GPU上来跑

大家好!这是系列文章【PyTorch深度学习实践】的又一分篇,本篇讲述卷积神经网络CNN的高级内容,并给出学习时建议阅读的Paper。深入浅出,引出更复杂的网络结构(非串行),并给出练习GoogLeNet以及ResNet网络的练习代码(既含有CPU版本也含有GPU版本),希望大家喜欢!欢迎大家提出意见和评论!

2023-04-26 14:46:28 301

原创 <1>【深度学习 × PyTorch】必备知识:torch | arange | shape | numel | reshape | tensor | zeros |ones | randn |cat

为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。 通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。 如果没有某种方法来存储数据,那么获取数据是没有意义的。首先,介绍维数组,也称为张量(tensor),然后逐层递进,带你领略PyTorch的奇妙世界!

2023-04-25 16:28:22 234 1

原创 ②【自监督学习 · 图神经网络 · 文献精读】用策略和主动选择的标签集进行自我监督的节点分类 | 半监督分类 | 自动超参数优化 | SSL

受CNN和图嵌入的启发,图神经网络(GNN)是深度学习的一个很有前景的应用,它通过为神经网络模型引入 层间传播规则 来聚合图结构的信息。由于邻居信息的贡献,GNN在半监督的节点分类任务中也表现良好。然而,… 本文与上一篇相比,有一些“门槛”。【不建议初学者阅读哈~】

2023-04-24 09:49:50 278

原创 【Python从入门到人工智能】14个必会的Python内置函数(8)——数据格式化处理 & 综合应用场景

本篇首先分享Python打印输出的综合应用场景相关知识并给出实现代码,具体包含中英文多列对齐输出(zip函数的应用)、通过print的多行打印模拟实现一个应用程序的主要应用界面、通过while循环和width实现分行输出国际列车的站名。随后初步分享了Python中格式化处理的一些知识,如格式转换、生成数据编号、格式化十进制整数、格式化浮点数、格式化百分数/科学记数法/金额等。

2023-04-24 08:19:41 455

原创 【自监督学习 · 图神经网络 · 文献精读】使用多尺度子图视图的自监督图表示学习对比 | 子图采样策略 | 自监督 | 对比学习 | 数据增强

现有的图表示学习方法大多是基于监督学习的,需要完整的图作为输入。它需要大量的计算内存成本。此外,现实世界中的图数据缺乏标签,手动标注数据的成本很高。自监督学习为图表示学习提供了一个潜在的解决方案来解决这些问题…如何更充分地提取图中的信息?} 这是我近期读过的与“自监督学习”相关的最新文献,特记录在此,仅学习使用。“科研人&论文党”建议订阅本专栏哈!长期更新!这价格订阅不亏~

2023-04-22 16:12:02 217 1

原创 基于【wordcloud × jieba】对文本进行分析,实现词云图可视化(附源代码+参数解析+注释+Bug解决+清晰度优化+建立词云的过程说明)

大家好,这是最近完成的一个项目,基于Python语言以及wordcloud × jieba 实现对文本分析,进而生成可视化的词云,最终的效果还是不错的!本次记录了过程中遇到的一些问题以及调试等过程,并且附带源代码,希望大家喜欢!欢迎大家阅读和留言。

2023-04-21 16:44:27 281

原创 【Python从入门到人工智能】14个必会的Python内置函数(7)——打印输出(详细语法参考 + 参数说明 + 具体示例)| 附:Python输出表情包

本篇继续分享Python中的内置函数,此次分享的是打印输出函数print(),来看一看,这是你所认为的print()吗?注意这虽然是基础内容,却又没那么基础,建议跟随练习,理解效果会更好哦!(涉及到的各种函数语法讲解将会十分细致)

2023-04-19 08:27:48 373

原创 【若你是研0,做的出来吗】布置给研0师弟的项目,半天就解决了?| 附:图神经网络入门路线(必读论文+代码实战路线) | Python数据预处理 | jiaba分词练习:对《春江花月夜》分词

近期实验室纳新,于是这几天面试了不少“研0”的新同学,有本科期间绩点很高的,也有几乎没有项目经历的。其实,这不是太过重要,关键的是,“有没有一颗做科研的心。” 布置给他们了一些新的项目,来看看他们的反馈如何?【师弟还是有不少基础的】

2023-04-18 08:21:48 151

原创 带你一文透彻学习【PyTorch深度学习实践】分篇—— 卷积神经网络CNN(基础篇)| 附:完整实例源代码 | 手把手教你如何在GPU上来跑

承接上述分享的文章,本篇继续分享【PyTorch深度学习实践】的知识,此次分享的是卷积神经网络即CNN的基础篇,一文带你纵览卷积与卷积的计算过程、单通道卷积、多通道卷积、卷积层权重等必会理念。此外,步步为营,稳扎稳打,让你深刻了解为了改进CNN,是如何引入padding、stride以及下采样等概念的。最后,针对MNIST数据集,讲述所采用的模型,并介绍了如何在GPU上部署项目,给出实例源代码。

2023-04-17 07:49:34 161

原创 【Python从入门到人工智能】14个必会的Python内置函数(6)——输入输出(详细语法参考 + 参数说明 + 具体示例)| 计算机八大学报都是什么?| 知识图谱&区块链技术

本期继续分享Python中的内置函数——输入输出 & 序列与迭代器,这不仅仅是Python语法,也是机器学习基础。首先开启输入输出的练习,你所认为的输入输出,是你所认为的输入输出吗?!来挑战一下!! 此外,你知道计算机八大学报吗?你知道知识图谱的研究现状吗?让我们一起来学习吧!

2023-04-14 08:39:30 71

原创 【Python从入门到人工智能】16个必会的Python内置函数(5)——数据转换与计算(详细语法参考 + 参数说明 + 具体示例)

本期,继续分享Python中的内置函数——关于“数据转换与计算”的内容。这也是人工智能与机器学习的基础建议需要掌握的代码,均附以实战练习来讲解,请跟随博主的脚步,逐层次进行练习。最后,再次与【文心一言】进行对话。

2023-04-13 07:57:47 120

原创 【自然语言处理】Gensim库 之 Word2vec | 实战练习:对小说《三国演义》进行Word2Vec训练(附:源代码 + 完整解析)

今天,来介绍Gensim库的一些知识。在自然语言处理中,不得不提到Gensim库,它是一个用于从文档中自动提取语义主题的Python库,且“足够智能”。gensim中的算法是无监督的,也就是说我们只需要一个语料库的文档集。当得到统计模式后,任何文本都能够用语义表示(semantic representation)来简介的表达,并得到一个局部的相似度来与其它文本区分开来。最后实战练习,针对《三国演义》小说。

2023-04-12 08:06:06 297

原创 【文心一言】内测版V1.0.3 沉浸式深度体验(2),有一丝失望,但也有惊喜。不知,你的感觉如何?

此前曾记录了初次使用【文心一言】的过程,只能说是“意犹未尽”!还有一些问题,让我们再来尝试询问它一下!看看它的表现如何?!这一次的体验,总体的感觉来讲,不如第一次的效果要好。文心一言,还需要加油啊!!

2023-04-11 09:21:17 3830 6

Python爬虫实战案例

这是近期做过的一个Python爬虫的实战案例,已经在博客中记录,详见:https://xiexu.blog.csdn.net/article/details/130935199。建议结合专栏【小小的项目 (实战+案例) 】学习,效果会更好哦!

2023-06-03

PyTorch基础回顾(生成线性模型、二分类等数据集..)

这是近期练习过的Python相关内容涉及到的code,已经在博客中记录,近期会发布。建议结合专栏【Python从入门到人工智能】学习,效果会更好哦!

2023-06-01

再识自动微分机制-PyTorch

这是博主主页的系列文章:<5>【深度学习 × PyTorch】“自动微分”机制 | 通俗理解 pytorch中的autograd、backward | 实例详解tensors、grad_tensors,将于近期发布。建议结合专栏【Python从入门到人工智能】学习,效果会更好!

2023-05-25

人工智能-问题检索-海报制作的心得体会等(工程伦理)

人工智能_问题检索_海报制作的心得体会等(工程伦理课程)

2023-05-24

深度学习-PyTorch-自动微分机制练习(完整代码)

这是 深度学习_PyTorch_自动微分机制练习(完整代码),已经在博客中记录,建议结合专栏【Python从入门到人工智能】学习,效果会更好!

2023-05-23

深度学习:导数与微积分练习(实例代码)

【深度学习】:导数与微积分练习(实例代码),已经在博客中记录。建议结合博主主页的专栏【Python从入门到人工智能】学习,效果会更好哦!

2023-05-23

照片处理工具【调整照片大小】

照片处理工具。可以用于调整数据集的照片大小~

2023-05-22

Xshell【Linux与本机互连 练习】

Xshell【Linux与本机互连 练习】

2023-05-22

Putty【本机与Linux互连使用】

Putty【本机与Linux互连使用】

2023-05-22

FileZilla-3.60.1-win64【Linux与Windows交互、文件上传使用】

大家好,这是本机(win11)在使用Linux操作系统时用到的,特上传此。

2023-05-22

d2l-0.15.1-py3-none-any【d2l工具包-人工智能】

近期安装过的工具包。博客中已经记录安装过程----->>建议结合专栏【Python从入门到人工智能】学习,效果会更好哦!

2023-05-19

CNN(可视化中间层的效果)完整代码

近期做过的小项目。建议结合专栏【Python从入门到人工智能】学习,效果会更好!

2023-05-19

CNN激活层可视化代码

这是近期做过的一个小项目,实现了CNN激活层的可视化。博客中已经记录,建议结合专栏【Python从入门到人工智能】学习,效果会更好!

2023-05-18

12周文献阅读思路框架分析(3)【自监督学习 时空图卷积网络 文献精读】步态识别 姿势估计 隐私保护生物识别技术.zip

大家好!这是 ——12周文献阅读思路框架分析(3)【自监督学习 时空图卷积网络 文献精读】步态识别 姿势估计 隐私保护生物识别技术。相关具体分析已经在博客中记录,即 https:/xiexu./blog.csdn.net/article/details/130727492。建议结合专栏 【小小的项目 (实战+案例)】学习,效果会更好!此外,专栏 【Python从入门到人工智能】 也适合正在读研(做科研)的朋友学习,欢迎订阅!一起学习吧!

2023-05-17

12周文献阅读思路大纲分析(2)-动作识别 时空对比学习 动作编码 GCN 对比性代理任务 对比学习 三维动作识别

大家好!这是 12周文献阅读思路大纲分析(2)——动作识别 时空对比学习 动作编码 GCN 对比性代理任务 对比学习 三维动作识别。已经在博客中记录:https://xiexu.blog.csdn.net/article/details/130708282?spm=1001.2014.3001.5502。建议结合专栏 【小小的项目 (实战+案例) 】学习,效果会更好!

2023-05-16

自监督学习-时空图神经网络-知识图谱-推荐-命名实体识别-12周文献阅读【思路大纲梳理】

大家好!如标题所示,这是我针对今天读过的文献,所绘制的详细思维导图,有助于深入理解该文献。其中主题 即如标题。对应的文章分析已经记录在博客中:https://xiexu.blog.csdn.net/article/details/130685762?spm=1001.2014.3001.5502。建议结合专栏【小小的项目 (实战+案例) 】学习,效果会更好!

2023-05-15

Xtranslator2.6版本安装包

如表示所述,这是一个文献翻译软件的安装包,个人亲测是很好用的!欢迎需要的朋友下载!

2023-05-14

机器学习-深度学习-常见评估方法-混淆矩阵、正确率、精确率、召回率、F值、预测概率、ROC曲线和AUC 均方误差、决定系数

大家好,这个资源是关于机器学习_深度学习 的常见评估方法,例如混淆矩阵、正确率、精确率、召回率、F值、预测概率、ROC曲线和AUC | 均方误差、决定系数、SVR | 超参数的设置 | 模型的过拟合与防止等方法,包含完整的实例代码。该内容已经在博客中记录,建议结合专栏【Python从入门到人工智能】学习,效果会更好!

2023-05-14

机器学习算法-无监督学习算法-基础示例代码【k-means、LDA、LLE、LSA、NMF、PCA、t-SNE、混合高斯分布等】

这是在机器学习中涉及到的无监督学习相关的算法,如:k-means、LDA、LLE、LSA、NMF、PCA、t-SNE、混合高斯分布等算法的基础示例代码,已经在博客中记录。建议结合主页专栏【Python从入门到人工智能】学习,效果会更好!

2023-05-12

机器学习算法练习-人工智能基础-硕士研究生 研0必练

近期跑过的机器学习算法(基础内容),已经在博客中详细记录。建议结合专栏【Python从入门到人工智能】学习,效果会更好!

2023-05-11

医学影像-肺部识别案例-案例思维解析

这是 医学影像_肺部识别案例_案例思维解析。详细code及分析见文章:https://xiexu.blog.csdn.net/article/details/130551479?spm=1001.2014.3001.5502。注:结合专栏【Python从入门到人工智能】学习,效果更好!

2023-05-10

近期文献阅读大纲-(四)-GCN存在的缺陷 多任务学习 自监督辅助任务 图卷积网络 半监督图分类任务

如标题所示,这是我根据近期读过的文献,所绘制的思维导图,详见主页文章:⑤ 【自监督学习 · 图神经网络 · 文献精读】GCN存在的缺陷 | 多任务学习 | 自监督辅助任务 | 图卷积网络 | 半监督图分类任务 | 附:文心一言 测试。注:结合专栏【Python从入门到人工智能】学习,效果更好!

2023-05-10

人工智能-自监督学习-图神经网络-近期文献阅读大纲-(三)

这是近期文献阅读大纲,根据所阅读的文献绘制的思维导图,参阅文章:https://xiexu.blog.csdn.net/article/details/130306307?spm=1001.2014.3001.5502, 以及:https://xiexu.blog.csdn.net/article/details/130335982?spm=1001.2014.3001.5502。结合上述两篇文章阅读,效果会更好。

2023-05-10

人工智能-深度学习-PyTorch数据读取实战(以RMB人民币二分类为例)【含详细源代码+数据集+图示分析】

大家好!这是近期完成的一个小项目:主题是:人工智能_深度学习_PyTorch数据读取实战(以RMB人民币二分类为例)【含详细源代码+数据集+图示分析】。资源是十分详细的,并且我已经在博客中记录,详见近期发表的文章:{《【Python从入门到人工智能】详解 PyTorch数据读取机制 DataLoader & Dataset(以人民币-RMB二分类实战 为例讲解,含完整源代码+问题解决)| 附:文心一言测试》},可按此关键词在我的主页搜索学习。该文章已经在主页的专栏【Python从入门到人工智能】中详细记录,建议结合专栏学习,效果会更好哦!祝大家学习顺利!

2023-05-09

基于PyTorch&迁移学习 的医学影像识别(完整版)案例分析(含思维解析)+源代码+完整数据集

大家好,这是 基于PyTorch&迁移学习 的医学影像识别(完整版)案例分析(含思维解析)+源代码+完整数据集,已经在博客中记录,可以参考学习:https://xiexu.blog.csdn.net/article/details/130551479?spm=1001.2014.3001.5502。本资源包含完整的源代码(含注释)+数据集,此外包含系统架构分析的思维导图,便于理解整个项目。建议结合博主的专栏【Python从入门到人工智能】学习,效果会更好!祝各位学习顺利!

2023-05-09

近期文献阅读大纲-(二):主题 为:人工智能&自监督学习&图神经网络&会话推荐&动态图表示学习

这是根据近期阅读的文献,所绘制的思维导图。主题 为:人工智能&自监督学习&图神经网络&会话推荐&动态图表示学习。对应博客记录地址为:https://xiexu.blog.csdn.net/article/details/130453758?spm=1001.2014.3001.5502。结合专栏:【小小的项目 (实战+案例) 】学习,效果更佳!

2023-05-08

基于pytorch & 迁移学习 实现医学影像识别(完整案例分析+源代码+详细注释+详细数据集+测试GPU详细代码)

大家好,这是近期完整的一个小项目。主题是 基于pytorch & 迁移学习 实现医学影像识别(完整案例分析+源代码+详细注释+详细数据集+测试GPU详细代码),这个案例还是很不错的,我已经在博客中记录,详见 2023.-05-08当天我发布的文章 【深度学习】基于PyTorch & 迁移学习 实现医学影像识别(详细案例分析 + 源代码)。欢迎有需要的朋友下载!祝各位学习顺利!(建议结合专栏【Python从入门到人工智能】学习,效果会更好哦!)

2023-05-08

人工智能&深度学习&图神经网络&自监督学习-近期文献阅读大纲-极其详细思维导图(一)

这是我根据近期阅读的文献,所绘制的文献思维导图,具体文章可参阅:https://xiexu.blog.csdn.net/article/details/130414698?spm=1001.2014.3001.5502。所阅读的主题是:《一种基于自监督学习的人脸美丽预测方法》,第二个是《基于自监督图对比学习的视频问答方法》。该资源是本人根据这两篇文章所绘制的思维导图,仅上传到此。不建议下载,这是个人资料汇总分析。若下载,建议阅读上述赋予的文章笔记。

2023-05-07

基于PyTorch-手写数字识别-完整代码(含数据集+输出+完整注释)

大家好,这是近期完整的一个小项目,基于PyTorch_手写数字识别_完整代码(含数据集+输出+完整注释),已经在博客中记录,建议结合专栏【Python从入门到人工智能】学习,效果会更好哈!欢迎有需要的朋友下载!祝各位学习顺利~

2023-05-03

Ubuntu系统配置PyTorch教学

Ubuntu系统配置PyTorch教学

2023-05-03

PyTorch & Tensor基础必学

如标题所示,这是 人工智能:PyTorch & Tensor基础必学的内容,已经在博客中详细分析记录。建议结合专栏【Python从入门到人工智能】学习,效果会更佳!

2023-05-03

人工智能&深度学习必练案例-PyTorch基于RNN和LSTM进行MNIST手写数字识别(完整代码,含完整注释 + 数据集

大家好!这是一个完整的深度学习案例,适合正在学习深度学习和人工智能的朋友练手使用,该案例所用框架为PyTorch,所用编程语言为Python,所使用的模型,最后各自运用两种模型(一个是RNN,一个是LSTM)完成了该项目,已经在博客中完整记录,下载后解压即可运行练习。建议结合专栏【Python从入门到人工智能】一起学习,效果会更好!欢迎有需要的朋友下载哦!

2023-05-02

【PyTorch 深度学习实战(2)】基于LSTM实现 MNIST手写数字识别 (含源代码+数据集 详解)-2023.5.2

大家好,这是近期做的一个小项目。主题是基于LSTM循环神经网络实现MNIST手写数字识别,所用的框架为目前的主流框架PyTorch,所用编程语言为Python。该项目我已经在博客中详细记录,包含每一步的结果和通俗的解释等,建议结合专栏【Python从入门到人工智能】学习,效果会更好哦!欢迎大家下载,交流学习。资源中含有完整的我调试过的源代码以及完整的数据集,可以直接使用和学习。

2023-05-02

【PyTorch 深度学习实战】基于RNN实现 MNIST手写数字识别 (附源代码 详解)

大家好,这是近期做的一个小项目。主题是基于RNN循环神经网络实现MNIST手写数字识别,所用的框架为目前的主流框架PyTorch,所用编程语言为Python。这个项目我已经在博客中详细记录,包含每一步的结果和通俗的解释等,建议结合专栏【Python从入门到人工智能】学习,效果会更好哦!欢迎大家下载,交流学习。

2023-05-02

人工智能&机器学习&深度学习必会的线性代数知识&完整代码

大家好!正如标题所示,这是 人工智能&机器学习&深度学习必会的【线性代数】知识&完整代码。这部分内容我已经在博客中记录,建议结合专栏【Python从入门到人工智能】学习,效果会更佳哈!祝大家学习顺利!也欢迎关注我,长期分享人工智能&机器学习&深度学习的知识,欢迎一起交流探讨,一起进步!

2023-04-28

完整代码 <2>【深度学习 × PyTorch】pandas 数据预处理 处理缺失值

大家好!这是近期【深度学习 × PyTorch】系列文章中我所写的一些代码。已经在博客中记录了。这是一个系列文章,将会持续更新!建议结合专栏【Python从入门到人工智能】学习,效果会更好哦!欢迎大家下载、学习、和交流。

2023-04-27

PyTorch必备知识(深度学习 & 人工智能 基础)

大家好,这是【PyTorch必备知识】,是今天练习PyTorch中跑过的所有源代码,已经在博客中记录,适用于正在学习深度学习&pytorch的朋友练习使用,建议结合专栏【Python从入门到人工智能】学习,效果会更佳哦!

2023-04-25

基于jieba & wordcloud的词云生成(完整源代码等)

大家好,这是系列文章基于【wordcloud × jieba】对文本进行分析,实现词云图可视化(附源代码+参数解析+注释+Bug解决+清晰度优化+建立词云的过程说明)中所设计到的完整项目源代码,已经在博客中记录,建议结合专栏【Python从入门到人工智能】学习,效果会更加哦!

2023-04-21

字体设置-STHeiti-Light.ttc-Font-2023.4.20

大家好,这是我在近期完成的一个小项目中用到的字体设置文件,即STHeiti-Light.ttc。具体的项目为实现【词云】,即针对已有的文本(如对于小说或者其它文本等),生成“词云”,这个项目还是比较有意思的!近期完成后也会在博客中记录分享的,可以期待一下!建议结合博主专栏【Python从入门到人工智能】学习,效果会更佳哦!

2023-04-20

2023【期刊投稿模板汇总】IEEE等期刊投稿模板大汇总-SpringerLNCS&Elsevier&Springer

大家好,这是近期总结(含个人笔记)的比较新的一些论文期刊的投稿模板,资源内容很丰富,希望对各位投稿会有些帮助。祝各位投稿顺利!

2023-04-20

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除