开篇,我们聊聊大量同学问我的一个问题,面试的时候被问到一个让人特别手足无措的问题:你的系统如何支撑高并发?
大多数同学被问到这个问题压根儿没什么思路去回答,不知道从什么地方说起,其实本质就是没经历过一些真正有高并发系统的锤炼罢了。
因为没有过相关的项目经历,所以就没法从真实的自身体会和经验中提炼出一套回答,然后系统的阐述出来自己复杂过的系统如何支撑高并发的。
当然这里首先说清楚一个前提:高并发系统各不相同。比如每秒百万并发的中间件系统、每日百亿请求的网关系统、瞬时每秒几十万请求的秒杀大促系统。
他们在应对高并发的时候,因为系统各自自身特点的不同,所以应对架构都是不一样的。
另外,比如电商平台中的订单系统、商品系统、库存系统,在高并发场景下的架构设计也是不同的,因为背后的业务场景什么的都不一样。
所以,主要是给大家提供一个回答这类问题的思路,不涉及任何复杂架构设计,让你不至于在面试中被问到这个问题时,跟面试官大眼瞪小眼。
罗马不是一天建成的,系统的设计也是如此。不同量级的系统有不同的痛点,也就有不同的架构设计的侧重点。如果都按照百万、千万并发来设计系统,电商一律向淘宝看齐,IM 全都学习微信和 QQ,那么这些系统的命运一定是灭亡。那么怎么学习呢?
我花了90天的时间整理出这份文档,我想结合自己的高并发项目经验,系统性地总结下高并发需要掌握的知识和实践思路,希望对你有所帮助。本文档共分为7个大的模块,为了不影响阅读,在这以截图形式展示目录与部分内容
下面让我们来看一下它的一部分目录:
基础篇
- 高并发系统:它的通用设计方法是什么
- 架构分层:我们为什么一定要这么做?
- 系统设计目标(一) :如何提升系统性能?
- 系统设计目标(二) :系统怎样做到高可用?
- 系统设计目标(三) :如何让系统易于扩展?
-
面试现场第一期:当问到组件实现原理时,面试官是在刁难你吗?
数据库篇
- 池化技术:如何减少频繁创建数据库连接的性能损耗?
- 数据库优化方案(一) :查询请求增加时,如何做主从分离?
- 数据库优化方案(二) :写入数据量增加时,如何实现分库分表?
- 发号器:如何保证分库分表后ID的全局唯一性?
-
NoSQL:在高并发场景下,数据库和NoSQL如何做到互补?
缓存篇
- 缓存:数据库成为瓶颈后,动态数据的查询要如何加速?
- 缓存的使用姿势(一) :如何选择缓存的读写策略?
- 缓存的使用姿势(二) :缓存如何做到高可用?
- 缓存的使用姿势(三) : 缓存穿透了怎么办?
-
CDN:静态资源如何加速?
消息队列篇
- 消息队列:秒杀时如何处理每秒上万次的下单请求?
- 消息投递:如何保证消息仅仅被消费一次?
- 消息队列:如何降低消息队列系统中消息的延迟?
-
面试现场第二期:当问到项目经历时,面试官究竟想要了解什么?
分布式服务篇
- 系统架构:每秒1万次请求的系统要做服务化拆分吗?
- 微服务架构:微服务化后,系统架构要如何改造?
- RPC框架: 10万QPS下如何实现毫秒级的服务调用?
- 注册中心:分布式系统如何寻址?
- 分布式Trace:横跨几十个分布式组件的慢请求要如何排查?
- 负载均衡:怎样提升系统的横向扩展能力?
- API网关:系统的门]面要如何做呢?
- 多机房部署:跨地域的分布式系统如何做?
-
Service Mesh:如何屏蔽服务化系统的服务治理细节?
维护篇
- 给系统加上眼睛:服务端监控要怎么做?
- 应用性能管理:用户的使用体验应该如何监控?
- 压力测试:怎样设计全链路压力测试平台?
- 配置管理:成千上万的配置项要如何管理?
- 降级熔断:如何屏蔽非核心系统故障的影响?
- 流量控制:高并发系统中我们如何操纵流量?
-
面试现场第三期:你要如何准备一场技术面试呢?
实战篇
- 计数系统设计(一 ) :面对海量数据的计数器要如何做?
- 计数系统设计(二) : 50万QPS下如何设计未读数系统?
- 信息流设计(一) :通用信息流系统的推模式要如何做?
-
信息流设计(二) :通用信息流系统的拉模式要如何做?