【斜率优化】特别行动队

特别行动队
【问题描述】
你有一支由n名预备役士兵组成的部队,士兵从1n编号,要将他们拆分
成若干特别行动队调入战场。出于默契的考虑,同一支特别行动队中队员的编号
应该连续,即为形如(i,i + 1, …, i + k)的序列。
编号为i的士兵的初始战斗力为xi,一支特别行动队的初始战斗力x为队内
士兵初始战斗力之和,即x= xi + xi+1 + … + xi+k
通过长期的观察,你总结出一支特别行动队的初始战斗力x将按如下经验公
式修正为x'x'= ax
2
+bx + c
,其中a,b, c是已知的系数(a< 0)。
作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后
战斗力之和最大。试求出这个最大和。
例如,你有4名士兵,x1= 2, x2 = 2, x3 = 3, x4 = 4。经验公式中的参数为a= –1,
b= 10, c = –20
。此时,最佳方案是将士兵组成3个特别行动队:第一队包含士兵
1
和士兵2,第二队包含士兵3,第三队包含士兵4。特别行动队的初始战斗力分
别为4,3, 4,修正后的战斗力分别为4,1, 4。修正后的战斗力和为9,没有其它
方案能使修正后的战斗力和更大。
【输入格式】
输入由三行组成。第一行包含一个整数n,表示士兵的总数。第二行包含三

个整数a,b, c,经验公式中各项的系数。第三行包含n个用空格分隔的整数x1,

x2,…, xn,分别表示编号为1,2, …, n的士兵的初始战斗力。

【输出格式】
输出一个整数,表示所有特别行动队修正后战斗力之和的最大值。
【样例输入】
4
-110 -20
2 2 3 4
【样例输出】
9
【数据范围】
20%
的数据中,n≤ 1000
50%
的数据中,n≤ 10,000
100%
的数据中,1≤ n ≤ 1,000,000,–5≤ a ≤ –1|b|≤ 10,000,000|c|≤
10,000,000
1≤ x ≤ 100



【题解】

f[i]表示从1i划分为若干组能取得的最大战斗力。

f[i]=max{f[j]+G(s[i]-s[j])}。(0<=j<i

其中s[i]1i的战斗力之和,G(x)=A*x^2+B*x+C;直接动规O(n^2),预计40~50分。

这种1D/1D的方程可以用斜率优化。

设有决策j,k。其中ji的最优决策,k为除j外任意决策。

f[j]+A*(s[i]-s[j])^2+B*(s[i]-s[j])+C>=f[k]+A*(s[i]-s[k])^2+B*(s[i]-s[k])+C

=>f[j]-f[k]+A*sj*sj-A*sk*sk-B*sj+B*sk>=2A*si*(sj-sk)

j<k时,(f[j]-f[k]+A*sj*sj-A*sk*sk-B*sj+B*sk/(sj-sk)<=2A*si

H[j,k]=f[j]-f[k]+A*sj*sj-A*sk*sk-B*sj+B*sk/(s[j]-s[k])

依据此函数与2A*s[i]的比较就可知两个决策的优劣。

然后维护一个决策值序列d,其中d1<d2<d3<……<dk。满足H[d1,d2]>=H[d2,d3]>=……>=H[dk-1,dk]

每次在队首剔除H[dl,dl+1]>2*A*si的决策,直至H[dl,dl+1]恰好小于等于2A*si,此时的dl就是最优决策。

只要多做此类的题就可以了。

除法的效率极低,耗时为乘法的几十倍,建议将一切除法改为乘法。

代码照标程序打(没法,太菜了) 

 
#include <iostream>
#include <cstdio>

using namespace std;

const  int maxn=1000000+5;
long long f[maxn],s[maxn];
int q[maxn];
int n;
long long a,b,c;

long long calc(int j,int k)
{
     return f[j]-f[k]+a*(s[j]*s[j]-s[k]*s[k])-b*(s[j]-s[k]);
}

int main()
{
    freopen("commando.in","r",stdin);
    freopen("commando.out","w",stdout);
    scanf("%d\n",&n);
    scanf("%I64d %I64d %I64d",&a,&b,&c);
    for (int i=1;i<=n;++i)
    {
        scanf("%d",&s[i]);
        s[i]+=s[i-1];
    }
    long long x;
    int y,l=0,r=0;
    for (int i=1;i<=n;++i)
    {
        while (l<r&&calc(q[l],q[l+1])<=2*a*s[i]*(s[q[l]]-s[q[l+1]]))l++;
        y=q[l];
        x=s[i]-s[y];
        f[i]=f[y]+a*x*x+b*x+c;
        while (l<r&&calc(q[r-1],q[r])*(s[q[r]]-s[i])<=(s[q[r-1]]-s[q[r]])*calc(q[r],i))r--;
        q[++r]=i;
    }
    printf("%I64d",f[n]);
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值