pandas学习笔记(一)

这篇博客介绍了pandas中的核心数据结构——Series和DataFrame。Series作为一维数组,类似于Numpy,且带有数据标签。文章探讨了Series对象的相加操作,当索引相同或一方缺失时,结果如何计算。同时提到了DataFrame对象,但未展开详细讨论。
摘要由CSDN通过智能技术生成
import pandas as pd

pandas常用的数据结构有Series和DataFrame,Series是一种一维数组型对象,与Numpy类似,并包含数据标签(索引)

Series对象

obj = pd.Series([1,2,3,4,5,6])
obj
0    1
1    2
2    3
3    4
4    5
5    6
dtype: int64
#查看Series值
obj.values
array([1, 2, 3, 4, 5, 6], dtype=int64)
#查看Series索引
obj.index
RangeIndex(start=0, stop=6, step=1)
#创建Series还可以指定索引
obj = pd.Series([1,2,3,4],index=['a','b','c','d'])
obj
a    1
b    2
c    3
d    4
dtype: int64
#使用字典生成Series 字典key为索引,字典value为值
score = {
   '英语':80,'数学':90,'语文':70}
obj = pd.Series
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值