哪个框架能够最大限度减少数据库访问,降低数据库访问压力, 哪个框架提供的性能就更高!
一、 inverse = ?
inverse=false(default)
用于单向one-to-many关联;
parent.getChildren().add(child) // insert child;
parent.getChildren().delete(child) // delete child;
inverse=true
用于双向one-to-many关联;
child.setParent(parent); session.save(child) // insert child;
session.delete(child);
在分层结构的体系中
parentDao, childDao对于CRUD的封装导致往往直接通过session接口持久化对象,而很少通过关联对象可达性。
二、one-to-many关系
单向关系还是双向关系?
parent.getChildren().add(child)对集合的触及操作会导致lazy的集合初始化,在没有对集合配置二级缓存的情况下,应避免此类操作!
select * from child where parent_id = xxx;
性能口诀:
1. 一般情况下避免使用单向关联,尽量使用双向关联;
2. 使用双向关联,inverse=“true”;
3. 在分层结构中通过DAO接口用session直接持久化对象,避免通过关联关系进行可达性持久化。
三、many-to-one关系
单向many-to-one表达了外键存储方
灵活运用many-to-one可以避免一些不必要的性能问题
many-to-one表达的含义是:0,n ,1:many可以是0,可以是1,也可以是n。
也就是说many-to-one可以表达一对多,一对一,多对一关系
因此可以配置双向many-to-one关系,例如:
一桌四人打麻将,麻将席位和打麻将的人是什么关系?是双向many-to-one的关系。
四、one-to-one
通过主键进行关联;
相当于把大表拆分为多个小表;
例如:
把大字段单独拆分出来,以提高数据库操作的性能;
Hibernate的one-to-one似乎无法lazy,必须通过bytecode enhancement。
五、集合List/Bag/Set
one-to-many
1. List需要维护index column,不能被用于双向关联,必须inverse=“false”,被谨慎的使用在某些稀有的场合;
2. Bag/Set语义上没有区别;
3.我个人比较喜欢使用Bag。
many-to-many
1. Bag和Set语义有区别;
2. 建议使用Set.
六。集合的过滤
children = session.createFilter(parent.getChildren(), “where this.age > 5 and this.age < 10”).list()
针对一对多关联当中的集合元素非常庞大的情况,特别适合于庞大集合的分页:
session.createFilter(parent.getChildren(),“”).setFirstResult(0).setMaxResults(10).list()。
七。继承关系当中的隐式多态
HQL: from Object
1. 把所有数据库表全部查询出来
2. polymorphism=“implicit”(default)将当前对象,和对象所有继承子类全部一次性取出
3. polymorphism=“explicit”,只取出当前查询对象
八。Hibernate二级缓存
著名的n+1问题:from Child,然后在页面上面显示每个子类的父类信息,就会导致n条对parent表的查询:
select * from parent where id = ?
.......................
select * from parent where id = ?
解决方案
1. fetch eageràlazy;
2. 二级缓存(BatchSize);
3. join fetch(createCriteria默认)。
九。inverse和二级缓存的关系
当使用集合缓存的情况下:
1. inverse=“false”,通过parent.getChildren()来操作,Hibernate维护集合缓存;
2. inverse=“true”,直接对child进行操作,未能维护集合缓存!导致缓存脏数据;
3. 双向关联,inverse=“true”的情况下应避免使用集合缓存。
十。Hibernate二级缓存是提升web应用性能的法宝
OLTP类型的web应用,由于应用服务器端可以进行群集水平扩展,最终的系统瓶颈总是逃不开数据库访问。
针对数据库的缓存策略:
1. 对象缓存:细颗粒度,针对表的记录级别,透明化访问,在不改变程序代码的情况下可以极大提升web应用的性能。对象缓存是ORM的制胜法宝。
2. 对象缓存的优劣取决于框架实现的水平,Hibernate是目前已知对象缓存最强大的开源ORM。
3. 查询缓存:粗颗粒度,针对查询结果集,应用于数据实时化要求不高的场合。
十一。应用场合决定了系统架构
1. 是否需要ORM
Hibernate or iBATIS?
2. 采用ORM决定了数据库设计
Hibernate:
倾向于细颗粒度的设计,面向对象,将大表拆分为多个关联关系的小表,消除冗余column,通过二级缓存提升性能(DBA比较忌讳关联关系的出现,但是ORM的缓存将突破关联关系的性能瓶颈);Hibernate的性能瓶颈不在于关联关系,而在于大表的操作。
iBATIS:
倾向于粗颗粒度设计,面向关系,尽量把表合并,通过表column冗余,消除关联关系。无有效缓存手段。iBATIS的性能瓶颈不在于大表操作,而在于关联关系。
总结:
性能口诀
1、使用双向一对多关联,不使用单向一对多;
2、灵活使用单向多对一关联;
3、不用一对一,用多对一取代;
4、配置对象缓存,不使用集合缓存;
5、一对多集合使用Bag,多对多集合使用Set;
6、继承类使用显式多态;
7、表字段要少,表关联不要怕多,有二级缓存撑腰。