Let's play OSU

Let’s play OSU
本题和OSU很像 ——升级版
首 先 , 老 套 路 , 定 义 f [ i ] 为 长 度 为 i 的 连 续 个 数 的 期 望 , a n s [ i ] 表 示 长 度 为 i , 平 方 的 期 望 首先,老套路,定义f[i]为长度为i的连续个数的期望,ans[i]表示长度为i,平方的期望 ,f[i]ians[i]i
我 们 发 现 , f [ i ] = ∑ x x ∗ p = ∑ x ∑ i = 1 x p ( 长 度 为 x 的 概 率 ) 我们发现,f[i]=\sum \limits_{x}x*p=\sum\limits_{x}\sum\limits_{i=1}^xp(长度为x的概率) ,f[i]=xxp=xi=1xp(x)
a n s [ i ] = ∑ x x 2 ∗ p ( 长 度 为 x 的 概 率 ) ans[i]=\sum \limits_{x}x^2*p(长度为x的概率) ans[i]=xx2p(x)即从i前随机抽取两个的方案数(可重)
——————————————————————————————————————
a n s [ i ] = a n s [ i − 1 ] ( 两 个 都 从 前 面 抽 并 且 不 一 定 连 续 ) + 2 ∗ f [ i − 1 ] ∗ p [ i ] ( 从 前 面 抽 一 个 , 这 一 个 必 抽 , 无 序 , 所 以 乘 2 ) + 1 ∗ p [ i ] ans[i]=ans[i-1](两个都从前面抽并且不一定连续)+2*f[i-1]*p[i](从前面抽一个,这一个必抽,无序,所以乘2)+1*p[i] ans[i]=ans[i1]()+2f[i1]p[i]2+1p[i]


#include<bits/stdc++.h>
using namespace std;

const int N=1e5+5;
int n;
double f[N],ans[N],p[N];
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++){scanf("%lf",&p[i]);}
    for(int i=1;i<=n;i++){
    	f[i]=(f[i-1]*p[i])+1*p[i];
    	ans[i]=ans[i-1]+2*f[i-1]*p[i]+1*p[i];
    }
    printf("%.15f",ans[n]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值