python的numpy中matrix.A与matrix.A[0]的区别

import numpy as np

a = np.zeros_like((2, 2, 2))
b = np.mat(a)
print(type(b))
c = b.A
print(type(c))
d = b.A[0]
print(type(d))

        首先建立任意一个数组a,将其转化为数组形式b(.A与.A[0]均是数组才有的方法)。分别对b使用.A与.A[0]方法,打印转换后的类型。

        会发现使用.A与.A[0]后得到的数据类型一样均为numpy.ndarray类型,因为打印的是是数组的类型,所以当然是一样的numpy.ndarray类型。所以.A与.A[0]均可以将矩阵变成数组形式。

        接着往下走,打印各个数组中元素的类型

import numpy as np

a = np.zeros_like((2, 2, 2))
b = np.mat(a)
print(type(b))
c = b.A
print(type(c[0]))
d = b.A[0]
print(type(d[0]))

        会得到以下结果

        可以看出使用.A方法后,矩阵中元素的类型仍为 numpy.ndarray,但是使用.A[0]方法后得到矩阵中的元素类型就变成了numpy.int32了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值