雨课堂作业整理1

第一次作业

1.下列序列是图序列的是( )
A.1,2,2,3,4,4,5
B.1,1,2,2,4,6,6
C.0,0,2,3,4,4,5
D.2,2,2,2,2,2,2

2.具有3个顶点互不同构的图有( )个
A.4 B.3 C.2 D.1

3.设图 G = ( V , E ) G=(V,E) G=(V,E),其中 V = { v 1 , v 2 , v 3 , v 4 } V=\{v_1,v_2,v_3,v_4\} V={v1,v2,v3,v4} E = { v 1 v 2 , v 1 v 3 , v 1 v 1 , v 2 v 4 , v 3 v 4 } E=\{v_1v_2,v_1v_3,v_1v_1,v_2v_4,v_3v_4\} E={v1v2,v1v3,v1v1,v2v4,v3v4},则 d ( v 1 ) = () d(v_1)=( ) d(v1)=()
A.4 B.3 C.2 D.1

4.设图 G = ( V , E ) G=(V,E) G=(V,E),其中 V = { v 1 , v 2 , v 3 , v 4 } V=\{v_1,v_2,v_3,v_4\} V={v1,v2,v3,v4} E = { v 1 v 2 , v 1 v 3 , v 1 v 1 , v 2 v 4 , v 3 v 4 } E=\{v_1v_2,v_1v_3,v_1v_1,v_2v_4,v_3v_4\} E={v1v2,v1v3,v1v1,v2v4,v3v4},则顶点导出子图 G [ { v 1 , v 2 , v 3 } ] G[\{v_1,v_2,v_3\}] G[{v1,v2,v3}] 中有( )条边
A.5 B.4 C.3 D.2

5.设图 G = ( V , E ) G=(V,E) G=(V,E),其中 V = { v 1 , v 2 , v 3 , v 4 } V=\{v_1,v_2,v_3,v_4\} V={v1,v2,v3,v4} E = { v 1 v 2 , v 1 v 3 , v 1 v 1 , v 2 v 4 , v 3 v 4 } E=\{v_1v_2,v_1v_3,v_1v_1,v_2v_4,v_3v_4\} E={v1v2,v1v3,v1v1,v2v4,v3v4},则边导出子图 G [ { v 1 v 1 , v 2 v 4 } ] G[\{v_1v_1,v_2v_4\}] G[{v1v1,v2v4}] 是图 G G G 的支撑子图。该说法( )。
A.正确 B.错误

6.若图 G G G 存在 ( u , v ) (u,v) (u,v) 闭途径,则图 G G G 中也一定存在 ( u , v ) (u,v) (u,v) 闭迹。该说法( )。
A.正确 B.错误

7.互不同构的 4 4 4 阶连通图有( )个。
A.6 B.5 C.4 D.3

8.在一个化学实验室里,有 n n n 个药箱,其中每两个不同的药箱恰有一种相同的化学品,而且每种化学品恰好在两个药箱中出现,则每个药箱有( )种化学品;这 n n n 个药箱种共有( )种不同的化学品。

9.平面上有 n n n 个点 S = { p 1 , p 2 , . . . , p n } S=\{p_1,p_2,...,p_n\} S={p1,p2,...,pn},其中任何两个点之间的距离至少是 1 1 1,证明这 n n n 个点中距离为 1 1 1 的点对数不超过 3 n 3n 3n
证明:

第二次作业

1.每对顶点都相邻的图是完全图。该说法( )。
A.正确 B.错误

2.(多选)设聚会有 n n n 人参加,已知聚会中要么有 3 3 3 个人互相都认识,要么有 3 3 3 个人相互都不认识,则参与这次聚会的人数 n n n 可能是( )。
A.7 B.6 C.5 D.4

3.如下图 G G G 是著名的 P e t e r s e n Petersen Petersen 图,关于此图说法正确的是( )。
Petersen图
A.它是二部图 B.它不是二部图

4.设有向图 D = ( V , A ) D=(V,A) D=(V,A),其中 V = { v 1 , v 2 , v 3 , v 4 } , A = { ( v 1 , v 2 ) , ( v 3 , v 4 ) , ( v 1 , v 1 ) , ( v 2 , v 4 ) , ( v 3 , v 4 ) } V=\{v_1,v_2,v_3,v_4\},A=\{(v_1,v_2),(v_3,v_4),(v_1,v_1),(v_2,v_4),(v_3,v_4)\} V={v1,v2,v3,v4}A={(v1,v2),(v3,v4),(v1,v1),(v2,v4),(v3,v4)},则 d + ( v 1 ) = d^+(v_1)= d+(v1)=( )
A.4 B.3 C.2 D.1

5.设有向图 D = ( V , A ) D=(V,A) D=(V,A),其中 V = { v 1 , v 2 , v 3 , v 4 } , A = { ( v 1 , v 2 ) , ( v 3 , v 4 ) , ( v 1 , v 1 ) , ( v 2 , v 4 ) , ( v 3 , v 4 ) } V=\{v_1,v_2,v_3,v_4\},A=\{(v_1,v_2),(v_3,v_4),(v_1,v_1),(v_2,v_4),(v_3,v_4)\} V={v1,v2,v3,v4}A={(v1,v2),(v3,v4),(v1,v1),(v2,v4),(v3,v4)},则它有( )个强连通分支。
A.4 B.3 C.2 D.1

6.任何长为奇数的闭途径中一定包含长为奇数的圈。该说法( )。
A.正确 B.错误

7.某次聚会很特别,在这次聚会中,每两个互相认识的人,都没有共同的熟人,但,每两个互不认识的人都恰有两个共同的熟人。有人宣称这次聚会的参加者一定有同样数目的熟人他的说法( )
A.正确 B.错误

8.完全二部图 K m , n K_{m,n} Km,n中有( )条边。

9.构造一个 7 7 7 4 4 4 正则简单图。

第三次作业

1.设 A ( G ) = A(G)= A(G)=
( 1 2 0 2 2 1 0 1 3 ) (3) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix} \tag{3} 120221013 (3),则顶点 v 1 v_1 v1 的度 d ( v 1 ) = d(v_1)= d(v1)=
A.5 B.4 C.3

2.设 A ( G ) = A(G)= A(G)=
( 1 2 0 2 2 1 0 1 3 ) (3) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix} \tag{3} 120221013 (3),则顶点 v 2 v_2 v2 v 2 v_2 v2 且长为 2 2 2 的不同路径有( )条。
A.9 B.8 C.7 D.6

3.设 A ( G ) = A(G)= A(G)=
( 0 0 1 2 1 1 1 3 0 ) (3) \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 3 & 0 \end{pmatrix} \tag{3} 021013110 (3),则有向图 D D D 中的有向边 ( v 2 , v 3 ) (v_2,v_3) (v2,v3) 有( )条。
A.3 B.2 C.1 D.0

4.设有向图 D = ( V , A ) D=(V,A) D=(V,A),其中 V = { v 1 , v 2 , v 3 } , A = { ( v 1 , v 2 ) , ( v 1 , v 3 ) , ( v 2 , v 3 ) , ( v 3 , v 2 ) } V=\{v_1,v_2,v_3\},A=\{(v_1,v_2),(v_1,v_3),(v_2,v_3),(v_3,v_2)\} V={v1,v2,v3}A={(v1,v2),(v1,v3),(v2,v3),(v3,v2)},则关联矩阵 M ( D ) = M(D)= M(D)=( )
A. [ 1 1 0 0 − 1 0 1 − 1 0 − 1 − 1 1 ] \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & -1 & -1 & 1 \end{bmatrix} 110101011011
B. [ − 1 − 1 0 0 1 0 − 1 1 0 1 1 − 1 ] \begin{bmatrix} -1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} 110101011011
C. [ 1 1 0 0 1 0 1 1 0 1 1 1 ] \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} 110101011011
5.设 G G G 如下图所示,则 ε ( G − v ) = \varepsilon(G-v)= ε(Gv)= ( )
习题3.5
A.8 B.6 C.4 D.2

6.设 G 1 , G 2 G_1,G_2 G1,G2 分别如下图所示,则 v ( G 1 ∪ G 2 ) = v(G_1 \cup G_2)= v(G1G2)=( )
习题3.6
A.5 B.4 C.3 D.2

7.设 G G G 如下图所示,则 G ⋅ e G·e Ge 的基础简单图有( )条边。
习题3.7
A.11 B.10 C.9 D.8

8.求下图 v 1 v_1 v1 v 2 v_2 v2 的最短路( )。
习题3.8
9.判断下图能否转化为笛卡尔积的形式,简述理由。
习题3.9

第四次作业

1.互不同构的六阶树有( )个。
A.10 B.8 C.6 D.4

2.已知 G G G 为简单图,且 v ( G ) = ε ( G ) = 2023 v(G)=\varepsilon(G)=2023 v(G)=ε(G)=2023,下列说法正确的是( )。
A. G G G 中一定有圈
B. G G G 一定连通
C. G G G 中不一定有圈
D. G G G 不一定联通

3.(多选)下列选项中有可能是树图的度序列的有 ()
A.(1,2,2,2,2,3)
B.(0,1,1,2,3,3)
C.(1,1,1,2,2,3)
D.(1,1,1,1,2,4)

4.(多选)设 G G G 是连通图, e ∈ E ( G ) e \in E(G) eE(G),则 w ( G − e ) w(G -e) w(Ge) 可能是( )
A.1 B.2 C.3 D.4

5.设图 G G G v v v 个顶点、 ε \varepsilon ε 条边和 ω \omega ω 个连通分支, G G G 中不同圈的个数为 n n n,则下列关于 n n n 的说法最恰当的是( )。
A. n ≥ ε − v n \geq \varepsilon-v nεv
B. n ≥ ε − v + ω n \geq \varepsilon-v+\omega nεv+ω
C. n ≤ ε − v − ω n \leq \varepsilon-v-\omega nεvω
D. n ≤ v − ω n \leq v-\omega nvω

6.设 G G G 如下图所示,则 τ ( G ) = \tau(G)= τ(G)=( )。
习题4.6
A.8 B.6 C.5 D.4

7. τ ( K 5 ) = \tau(K_5)= τ(K5)=( )。
A. 5 10 5^{10} 510 B. 5 8 5^8 58 C. 5 5 5^5 55 D. 5 3 5^3 53

8.设 G G G 如下图所示,则 G G G 中含有边 e e e 的支撑树有( )。
习题4.8
9.设 T T T 是一棵树,其平均度为 α \alpha α,求 v ( T ) v(T) v(T)

第五次作业

1.设 G G G 如下图所示,则 G − { e 1 , e 2 } G-\{e_1,e_2\} G{e1,e2} 中割边的数目为()
习题5.1
A.4 B.3 C.2 D.1

2.设 G G G 如图所示,其割边有( )个
习题5.2
A.1 B.2 C.3 D.4

3.设 G G G 如下图所示,则下列关于边集 { e 1 , e 2 , e 3 } \{e_1,e_2,e_3\} {e1,e2,e3} 的说法正确的是( )
习题5.3

A.它是割边 B.它不是边割

4.(多选)设 G G G 如下图所示,下列选项中是边割的有( )
习题5.4
A. { e 3 , e 6 } \{e_3,e_6\} {e3,e6} B. { e 3 , e 6 , e 2 } \{e_3,e_6,e_2\} {e3,e6,e2} C. { e 3 , e 6 , e 2 , e 4 } \{e_3,e_6,e_2,e_4\} {e3,e6,e2,e4} D. { e 3 , e 6 , e 2 , e 4 , e 5 } \{e_3,e_6,e_2,e_4,e_5\} {e3,e6,e2,e4,e5}

5.设 G G G 如下图所示,树 T = G [ { e 1 , e 2 , e 3 , e 4 } ] T=G[\{e_1,e_2,e_3,e_4\}] T=G[{e1,e2,e3,e4}],则补树 T ‾ \overline{T} T 有( )条边
习题5.5
A.0 B.1 C.2 D.3

6.设 G G G 如下图所示,树 T = G [ { e 1 , e 2 , e 3 , e 4 } ] T=G[\{e_1,e_2,e_3,e_4\}] T=G[{e1,e2,e3,e4}],则 T ‾ + e 1 \overline{T}+e_1 T+e1 中有唯一一个极小边割是( )
习题5.6
A. e 1 e_1 e1 B. e 5 e_5 e5 C. e 6 e_6 e6 D. { e 1 , e 5 , e 6 } \{e_1,e_5,e_6\} {e1,e5,e6}

7.设 G G G 如下图所示,下列选项中是极小边割的有( )
习题5.6
A. { e 3 , e 6 } \{e_3,e_6\} {e3,e6} B. { e 2 , e 5 } \{e_2,e_5\} {e2,e5} C. { e 2 , e 3 , e 6 } \{e_2,e_3,e_6\} {e2,e3,e6} D. { e 4 } \{e_4\} {e4}

8.(多选)下列说法正确的有()
A.若 ω ( G − v ) > ω ( G ) \omega(G-v) > \omega(G) ω(Gv)>ω(G),则 v v v 一定是割点。
B.即使 ω ( G − v ) > ω ( G ) \omega(G-v) > \omega(G) ω(Gv)>ω(G) v v v 页不一定是割点。
C.若 d ( v ) > 1 d(v) > 1 d(v)>1 T T T 是树,则 v v v 一定是树 T T T 上的割点。
D.若 T T T 是树,则任何 v ∈ V ( T ) v\in V(T) vV(T) v v v 都是割点。

9.设 G G G 如下图所示, S = { v 1 , v 5 } S=\{v_1,v_5\} S={v1,v5},请将边割 [ S , S ‾ ] [S,\overline{S}] [S,S] 分解为若干个边不交的极小边割的并。
习题5.9

第六次作业

1.网络中的每条边都对应于一个实数,即该边的权。该说法()
A.正确 B.错误

2.设网络 G G G 如下图所示。用 P r i m Prim Prim 算法求它的最小支撑树时,第一步添加的边可能是( )
习题6.2
A. v 1 v 2 v_1v_2 v1v2 B. v 3 v 4 v_3v_4 v3v4 C. v 5 v 10 v_5v_{10} v5v10 D. v 3 v 7 v_3v_7 v3v7

3.设网络 G G G 如下图所示。用Prim算法求最小支撑树时,设已添加边 v 3 v 4 v_3v_4 v3v4,接下来添加的边是( )
习题6.3
A. v 1 v 3 v_1v_3 v1v3 B. v 1 v 4 v_1v_4 v1v4 C. v 4 v 10 v_4v_{10} v4v10 D. v 5 v 10 v_5v_{10} v5v10

4.设 T T T 是图 G G G 的支撑树, e ∈ E ( T ) , e 1 ∈ E ( G ) e\in E(T),e_1\in E(G) eE(T),e1E(G) \ E ( T ) E(T) E(T),则 T − e + e 1 T-e+e_1 Te+e1 一定是 G G G 的支撑树,该说法( )。
A.正确 B.错误

5.设Prim算法依次添加的边是 e 1 , e 2 , . . . , e v − 1 e_1,e_2,...,e_{v-1} e1,e2,...,ev1,则 G [ { e 1 , e 2 , . . . , e k } ] ( 1 ≤ k ≤ v − 1 ) G[\{e_1,e_2,...,e_k\}] (1 \leq k \leq v-1) G[{e1,e2,...,ek}](1kv1) 都是最小支撑树的子图。
A.正确 B.错误

6.(多选)设网络 G G G 如下图所示。用 Kruskal 算法求它的最小支撑树时,第二步添加的边可能是( )
习题6.6
A. v 1 v 3 v_1v_3 v1v3 B. v 3 v 4 v_3v_4 v3v4 C. v 5 v 10 v_5v_{10} v5v10 D. v 7 v 9 v_7v_9 v7v9

7.设网络 G G G 如下图所示。用 Kruskal 算法求它的最小支撑树时,第四次添加的边是 v 7 v 10 v_7v_{10} v7v10,则第五次添加的边一定不是( )
习题6.7
A. v 1 v 3 v_1v_3 v1v3 B. v 1 v 2 v_1v_2 v1v2 C. v 5 v 6 v_5v_6 v5v6 D. v 9 v 10 v_9v_{10} v9v10

8.根树中有且仅有一个顶点的入度为 0 0 0,该说法( )
A.正确 B.错误

9.如下二元树的生成的前缀码是( )
习题6.9
A. { 00 , 01 , 10 , 111 } \{00,01,10,111\} {00,01,10,111}
B. { 000 , 001 , 010 , 0111 } \{000,001,010,0111\} {000,001,010,0111}
C. { 001 , 0111 } \{001,0111\} {001,0111}
D. { 001 , 1011 } \{001,1011\} {001,1011}

10.设 v 1 v_1 v1是带权 0.1,0.1,0.2,0.2,0.4的 Huffman 树中叶子顶点,且对应的权为0.1, v 0 v_0 v0为根,则 ( v 0 , v 1 ) (v_0,v_1) (v0,v1)链的长 l 1 l_1 l1 为( )。
A.1 B.2 C.3 D.4

第七次作业

1.容量网络中源的出度为 0 0 0,汇的入度为 0 0 0。该说法( )
A.正确 B.错误

2.设某容量网络如图所示。每条弧上的第一个数字表示容量,第二个数为流量。则 a a a 的值为( )
习题7.2
A.7 B.2 C.1

3.设某容量网络如图所示。每条弧上的第一个数字表示容量,第二个数为流量。则流值为( )
习题7.3
A.10 B.13 C.6

4.设某容量网络如图所示。弧集 { ( v 1 , v 4 ) , ( v 3 , v 1 ) , ( v 2 , v 3 ) } \{(v_1,v_4),(v_3,v_1),(v_2,v_3)\} {(v1,v4),(v3,v1),(v2,v3)}是一个截。该说法( )
习题7.4
A.正确 B.错误

5.设某容量网络如图所示。顶点集 S = { v s , v 1 , v 2 } S=\{v_s,v_1,v_2\} S={vs,v1,v2},则截 ( S , S ‾ ) (S,\overline{S}) (S,S) 的容量 c ( S , S ‾ ) = c(S,\overline{S})= c(S,S)=( )。
习题7.5
A.15 B.12 C.10 D.8

6.设 D D D 是一个容量网络,源为 v s v_s vs 汇为 v t v_t vt。设 f f f 是容量网络 D D D 的一个流, ( S , S ‾ ) (S,\overline{S}) (S,S) D D D 的一个截,则下列一定不成立的是( )
A. v a l ( f ) < c ( S , S ‾ ) val(f)<c(S,\overline{S}) val(f)<c(S,S)
B. v a l ( f ) > c ( S , S ‾ ) val(f)>c(S,\overline{S}) val(f)>c(S,S)
C. v a l ( f ) = c ( S , S ‾ ) val(f)=c(S,\overline{S}) val(f)=c(S,S)
D. v a l ( f ) ≠ c ( S , S ‾ ) val(f)\neq c(S,\overline{S}) val(f)=c(S,S)

7.设 D D D 是一个容量网络,源为 v s v_s vs 汇为 v t v_t vt。设 f f f 是容量网络 D D D 的一个流, ( S , S ‾ ) (S,\overline{S}) (S,S) D D D 的一个截。若 v a l ( f ) = c ( S , S ‾ ) val(f)=c(S,\overline{S}) val(f)=c(S,S),则 f f f 一定是最大流。该说法( )。
A.正确 B.错误

8.设 D D D 是一个容量网络,源为 v s v_s vs 汇为 v t v_t vt。设 f f f 是容量网络 D D D 的一个流, ( S , S ‾ ) (S,\overline{S}) (S,S) D D D 的一个截。若 v a l ( f ) < c ( S , S ‾ ) val(f)<c(S,\overline{S}) val(f)<c(S,S),则 f f f 一定不是最大流。该说法( )。
A.正确 B.错误

9.设 D D D 是一个容量网络,源为 v s v_s vs 汇为 v t v_t vt。设 f f f 是容量网络 D D D 的一个流, ( S , S ‾ ) (S,\overline{S}) (S,S) D D D 的一个截。若 v a l ( f ) < c ( S , S ‾ ) val(f)<c(S,\overline{S}) val(f)<c(S,S),则 ( S , S ‾ ) (S,\overline{S}) (S,S) 一定不是最小截。该说法( )。
A.正确 B.错误

10.设 D D D 是一个容量网络,源为 v s v_s vs 汇为 v t v_t vt。设 f f f 是容量网络 D D D 的一个流, ( S , S ‾ ) (S,\overline{S}) (S,S) D D D 的一个截。若 v a l ( f ) = c ( S , S ‾ ) val(f)=c(S,\overline{S}) val(f)=c(S,S),则必有 c f ( S ‾ , S ) = 0 c_f(\overline{S},S)=0 cf(S,S)=0。该说法( )。
A.正确 B.错误

第八次作业

  1. f f f 可增链上每条弧的方向都与链的规定方向一致。该说法( )。
    A.正确 B.错误

2.(多选)设 D D D 是容量网络, v s v_s vs 为源, v t v_t vt 为汇, f f f 为流。 ( v i , v j ) (v_i,v_j) (vi,vj) f f f 非饱和链上的正向弧。下列各式可能成立的有( )
A. f i j < c i j f_{ij}<c_{ij} fij<cij
B. f i j = c i j f_{ij}=c_{ij} fij=cij
C. f i j = 0 f_{ij}=0 fij=0
D. f i j > 0 f_{ij}>0 fij>0

3. f f f 是最大流当且仅当容量网络 D D D 中存在 f f f 可增链。该说法( )
A.正确 B.错误

4.设容量网络 D D D 如图所示。每条弧上的第一个数字表示容量,第二个数为流量。用标号法求最大流的过程中,已获得标号的顶点如图,则下一步可以获得标号的顶点有( )
习题8.4
A. v 3 v_3 v3 B. v 4 v_4 v4 C. v t v_t vt

5.(多选)设容量网络D如图所示。每条弧上的第一个数字表示容量,第二个数为流量。下列说法正确的有( )
习题8.5
A.该流为最大流
B. S = { v s } S=\{v_s\} S={vs},则 ( S , S ‾ ) (S,\overline{S}) (S,S) 是最小截。
C. S = { v 1 , v 2 } S=\{v_1,v_2\} S={v1,v2},则 ( S , S ‾ ) (S,\overline{S}) (S,S) 是最小截。
D. S = { v s , v 1 , v 2 } S=\{v_s,v_1,v_2\} S={vs,v1,v2},则 ( S , S ‾ ) (S,\overline{S}) (S,S) 是最小截。

6.通过反向弧也可以使顶点获得标号。该说法( )。
A.正确 B.错误

7.设 S S S 是求最大流的标号发结束时获得标号的顶点集,则 ( S , S ‾ ) (S,\overline{S}) (S,S) 一定是最小截。该说法( )。
A.正确
B.错误

8.设 S S S 是求最大流 f f f 的标号法结束时获得标号的顶点集,则下列说法正确的有( )。
A. c f ( S , S ‾ ) = c ( S , S ‾ ) c_f(S,\overline{S})=c(S,\overline{S}) cf(S,S)=c(S,S)
B. v a l ( f ) = c ( S , S ‾ ) val(f)=c(S,\overline{S}) val(f)=c(S,S)
C.设 S 1 = { v s } S_1=\{v_s\} S1={vs},则 ( S 1 , S 1 ‾ ) (S_1,\overline{S_1}) (S1,S1) 是最小截。
D. c f ( S ‾ , S ) = 0 c_f(\overline{S},S)=0 cf(S,S)=0

9.设某容量网络如图所示。每条弧上的第一个数字表示容量,第二个数为费用,第三个数为流量。则该流的费用 b ( f ) = b(f)= b(f)=( )。
习题8.9
A.62 B.52 C.61 D.41

10.通过修改圈上流量的方法,有可能使得流值不变,费用降低。该说法( )
A.正确 B.错误

11.设 Q Q Q 是容量网络 D D D 上关于流 f f f 的增广圈,则下列说法正确的有( )
A.正向弧都是非饱和弧
B.正向弧上的流量都为正
C.反向弧都是非饱和弧
D.反向弧上的流量都为正

12.设某容量网络如图所示。每条弧上的第一个数字表示容量,第二个数为费用,第三个数为流量。设 Q = v s v 2 v 3 v 1 v s Q=v_sv_2v_3v_1v_s Q=vsv2v3v1vs,取逆时针方向,则 δ ( Q ) = \delta(Q)= δ(Q)=( )。
习题8.12
A.0 B.1 C.2 D.3

13.设某容量网络如图所示。每条弧上的第一个数字表示容量,第二个数为费用,第三个数为流量。设 Q = v s v 2 v 3 v 1 v s Q=v_sv_2v_3v_1v_s Q=vsv2v3v1vs,取顺时针方向,则 δ ( Q ) = \delta(Q)= δ(Q)=( )。
习题8.13
A.0 B.1 C.2 D.3

14.设某容量网络如图所示。每条弧上的第一个数字表示容量,第二个数为费用,第三个数为流量。设 Q = v s v 2 v 3 v 1 v s Q=v_sv_2v_3v_1v_s Q=vsv2v3v1vs,取逆时针方向,基于 Q Q Q 的修正流为 f ′ f' f,则 f s 1 ′ = f_{s1}'= fs1=( )。
习题8.14
15.设某容量网络如图所示。每条弧上的第一个数字表示容量,第二个数为费用,第三个数为流量。设 Q = v s v 2 v 3 v 1 v s Q=v_sv_2v_3v_1v_s Q=vsv2v3v1vs,取逆时针方向,则 b ( Q , f ) = b(Q,f)= b(Q,f)=( )。
习题8.15
A.-27 B.-2 C.2 D.27

16.(多选)决定一个圈是否为负圈的因素有( )
A.弧上的流量
B.弧上的容量
C.弧上的费用
D.圈的方向

17.已知容量网络 D D D,如下图所示, f f f D D D 的最大流,则 v a l ( f ) = val(f)= val(f)=___。
习题8.17
18.设某容量网络如图所示。每条弧上的第一个数字表示容量第二个数为费用, f ∗ f^{*} f 为最小费用最大流,则 v a l ( f ∗ ) = val(f^{*})= val(f)= __, b ( f ∗ ) = b(f^{*}) = b(f)= ___。
习题8.18

第九次作业

1.如果图 G G G E u l e r Euler Euler 图,则 G G G 一定是连通图。该说法( )。
A.正确 B.错误

2.如果图 G G G 中存在包含所有___的闭___,则 G G G E u l e r Euler Euler 图.这两个空格中依次填入( )
A.边,迹
B.边,链
C.顶点,迹
D.顶点,链

3.如下图 G G G 是著名的 P e t e r s e n Petersen Petersen 图,关于此图说法正确的是( )。
习题9.3
A.它是Euler图
B.它不是Euler图
C.它是半Euler图
D.它不是半Euler图

4.设 G G G 如下图所示,下列选项中是割边的为( )。
习题9.4
A. v 3 v 4 v_3v_4 v3v4 B. v 3 v 6 v_3v_6 v3v6 C. v 4 v 7 v_4v_7 v4v7 D. v 4 v 5 v_4v_5 v4v5

5.设图 G G G 如下图所示,用 F l e u r y Fleury Fleury 算法求它的 E u l e r Euler Euler 闭迹。当算法已经构造出 W = v 1 v 2 v 3 W=v_1v_2v_3 W=v1v2v3 时下一步可选择的边有 ( )
习题9.5
A. v 1 v 3 v_1v_3 v1v3 B. v 3 v 6 v_3v_6 v3v6 C. v 3 v 4 v_3v_4 v3v4 D. v 3 v 7 v_3v_7 v3v7

6.含有偶数个顶点的Euler图一定含有偶数条边。该说法( )
A.正确 B.错误

7.若 G G G E u l e r Euler Euler 图,则 G G G 可分解为若干个边不交的圈的并。该说法( )。
A.正确 B.错误

8.设 G n G_n Gn 是一个图,其顶点是 { 1 , 2 , . . . , n } \{1,2,...,n\} {1,2,...,n} 所有全排列,两个排列 a 1 a 2 . . . a n a_1a_2...a_n a1a2...an b 1 b 2 . . . b n b_1b_2...b_n b1b2...bn 相邻当且仅当它们可以经过一次对换相互转化。下列说法正确的是
习题9.8
A. G 3 G_3 G3 E u l e r Euler Euler 图, G 4 G_4 G4 E u l e r Euler Euler 图。
B. G 3 G_3 G3 E u l e r Euler Euler 图, G 4 G_4 G4 不是 E u l e r Euler Euler 图。
C. G 3 G_3 G3 不是 E u l e r Euler Euler 图, G 4 G_4 G4 E u l e r Euler Euler 图。
D. G 3 G_3 G3 不是 E u l e r Euler Euler 图, G 4 G_4 G4 不是 E u l e r Euler Euler 图。

9.设邮递员负责的投递街区如图所示。他从邮局出发,每条街道至少投递一次,最后回到邮局。若使走过的总路程最短,下列选项中需要重复走的街道是( )。
习题9.9
A. v 1 v 2 v_1v_2 v1v2
B. v 1 v 3 v_1v_3 v1v3
C. v 1 v 4 v_1v_4 v1v4

10.(多选)设邮递员负责的投递街区如图所示。他从邮局出发,每条街道至少投递一次,最后回到邮局。若使走过的总路程最短,需要重复走的街道有( )。
习题9.10
A. v 1 v 2 v_1v_2 v1v2
B. v 2 v 3 v_2v_3 v2v3
C. v 1 v 4 v_1v_4 v1v4
D. v 3 v 4 v_3v_4 v3v4

11.设 W W W 是由奇偶点图上作业法得到的闭途径,则 W W W 满足( )
A.含有 G G G 的每条边至少一次
B. W W W 中没有二重以上的边
C. G G G 中每个圈上重边的权和不超过该圈权和的一半
D. W W W 中一定含有二重边

12.设 G G G 是加权连通图, W 1 , W 2 W_1,W_2 W1,W2 G G G 的两个不同的最优环游,重边集合分别为 E 1 , E 2 E_1,E_2 E1,E2,且 E 1 ≠ E 2 E_1\neq E_2 E1=E2,则下列各式成立的是( )。
A. ω ( E 1 − E 2 ) = ω ( E 2 − E 1 ) \omega(E_1-E_2)=\omega(E_2-E_1) ω(E1E2)=ω(E2E1)
B. ω ( E 1 ) = ω ( E 2 ) \omega(E_1)=\omega(E_2) ω(E1)=ω(E2)
C. ω ( E 1 ) ≠ ω ( E 2 ) \omega(E_1)\neq \omega(E_2) ω(E1)=ω(E2)
D. ω ( E 1 − E 2 ) ≠ ω ( E 2 − E 1 ) \omega(E_1-E_2)\neq \omega(E_2-E_1) ω(E1E2)=ω(E2E1)

13.设 G G G 是加权连通图, W 1 , W 2 W_1,W_2 W1,W2 G G G 的两个边集不同的最优环游,重边集合分别为 E 1 , E 2 E1,E2 E1,E2,且 E 1 ≠ E 2 E_1\neq E_2 E1=E2。记 E 3 = ( E 1 − E 2 ) ∪ ( E 2 − E 1 ) E_3=(E_1-E_2) \cup (E_2-E_1) E3=(E1E2)(E2E1) G ′ = G [ E 3 ] G'=G[E_3] G=G[E3],则下列说法正确的是( )。
A. G ′ G' G 是Euler图
B. G ′ G' G 中每个顶点都是偶点
C. G ′ G' G 是连通图
D. G ′ G' G 是二部图

14.设邮递员负责的投递街区如图所示。他从邮局出发,每条街道至少投递一次,最后回到邮局,则邮递员走过的最短总路程是( )。
习题9.14
A.23 B.19 C.26 D.20

15.中国邮递员问题是我国___教授首先提出并加以研究的。

16.设邮递员负责的投递街区如图所示。先求出需要重复走的边再给出最优环游及邮递员所走边的最短总路程。
习题9.16
17.请设计具有三个触点的编码盘使圆盘旋转一周恰好输出000到111的所有8个三位二进制

第十次作业

1.若 G G G 中存在包含一切顶点的圈 C C C,则 G G G H a m i l t o n Hamilton Hamilton 图。该说法( )
A.正确 B.错误

2.半 H a m i l t o n Hamilton Hamilton 图不一定是连通图。该说法( )
A.正确 B.错误

3.设 G G G 如下图所示,则下列说法正确是( )。
习题10.3
A.它是 H a m i l t o n Hamilton Hamilton 图。
B.它不是 H a m i l t o n Hamilton Hamilton 图。

4.图G的闭包唯一,与添加边的顺序无关。该说法( )。
A.正确 B.错误

5.(多选)设图 G G G 满足: ∀ v ∈ V ( G ) \forall v \in V(G) vV(G),有 d ( v ) ≥ v 2 d(v)\geq\frac{v}{2} d(v)2v。则下列说法正确的有( )。
A. c ( G ) c(G) c(G) 是完全图
B. c ( G ) c(G) c(G) 不一定是完全图
C. G G G H a m i l t o n Hamilton Hamilton
D. G G G 不一定是 H a m i l t o n Hamilton Hamilton 图。

6.已知完全二部图 K m , n K_{m,n} Km,n H a m i l t o n Hamilton Hamilton 图,则下列说法正确的是( )。
A. m ≠ n m \neq n m=n
B. m = n 且都大于 1 m=n 且都大于 1 m=n且都大于1
C.与 m , n m,n m,n 的奇偶性有关

7.有 n ( n ≥ 4 ) n(n\geq4) n(n4) 个人,任意两个人合起来认识其余的 n − 2 n-2 n2 个人,则这 n n n 个人能站成一排,使每一个人的两旁站着自己认识的人。该说法( )。
A.正确 B.错误

8.已知赵,钱,孙,李,周,吴,郑这七个人中,赵会讲英语;钱会讲英语和汉语;孙会讲英语、意大利语和俄语;李会讲汉语和日语;周会讲意大利语和德语;吴会讲俄语、日语和法语;郑会讲德语和法语。把他们按_____次序排在圆桌旁,可使得每个人都能与他身边的人交谈。

9.证明任一个有限集合的全部子集可以这样排列顺序,使任何相邻的两个子集仅相差一个元素。

第十一次作业

1.设 G G G 是连通图,则 G G G 有强连通定向图,当且仅当 G G G 中 ( )
A.没有割边
B.含有割边
C.没有割点
D.含有割点

2.(多选)设 D = ( V , A ) D=(V,A) D=(V,A) v ≥ 2 v \geq 2 v2 的强连通有向图,下列说法正确的有().
A. D D D 的每个顶点都在回路上
B. D D D 的每条弧都在回路上
C. D D D 的每两个顶点都在回路上
D. D D D 的每两条弧都在回路上

3.设有向图 D D D 如下图所示,设 S = { v 1 , v 4 , v 6 } S=\{v_1,v_4,v_6\} S={v1,v4,v6},则 ( S , S ‾ ) = (S,\overline{S})= (S,S)=( )。
习题11.3
A. { v 1 v 4 , v 4 v 2 , v 4 v 6 } \{v_1v_4,v_4v_2,v_4v_6\} {v1v4,v4v2,v4v6}
B. { v 1 v 4 , v 3 v 1 , v 4 v 2 , v 4 v 6 , v 5 v 4 } \{v_1v_4,v_3v_1,v_4v_2,v_4v_6,v_5v_4\} {v1v4,v3v1,v4v2,v4v6,v5v4}
C. { v 4 v 2 } \{v_4v_2\} {v4v2}

4.设 D D D 是简单有向图,只要 d D + ( u ) + d D − ( v ) ≥ a d_D^+(u)+d_D^-(v) \geq a dD+(u)+dD(v)a ∀ ( u , v ) ∉ A ( D ) , u ≠ v \forall(u,v) \notin A(D),u \neq v (u,v)/A(D),u=v,则 D D D 必是强连通的。其中 a a a 的最小取值是( )。
A. v v v
B. v + 1 v+1 v+1
C. 2 v 2v 2v

5.设有向图 D D D 如下图琐事,则 N D + ( v 1 ) = N_D^+(v_1)= ND+(v1)=( )。
习题11.5
A. { v 4 } \{v_4\} {v4}
B. { v 3 } \{v_3\} {v3}
C. { v 3 , v 4 } \{v_3,v_4\} {v3,v4}

6.下列说法正确的是()
A.任何 v v v 阶竞赛图 D D D 都是有向 H a m i l t o n Hamilton Hamilton
B.任何v阶竞赛图D都是有向半 H a m i l t o n Hamilton Hamilton 图。
C. v v v 阶竞赛图 D D D 是否为有向 H a m i l t o n Hamilton Hamilton 图与 v v v 的奇偶性有关。
D. v v v 阶竞赛图 D D D 是否为有向半 H a m i l t o n Hamilton Hamilton 图与 v v v 的奇偶性有关。

7.设 D D D v ≥ 2 v \geq 2 v2 的强连通简单有向图,若对任一对不相邻的相异顶点 u u u v v v,有 d ( u ) + d ( v ) ≥ v d(u) + d(v) \geq v d(u)+d(v)v,则 D D D 是有向 H a m i l t o n Hamilton Hamilton 图。该说法( )。
A.正确 B.错误

8.设 V ( D ) = { v 1 , v 2 , . . . v n } V(D)=\{v1,v_2,...v_n\} V(D)={v1,v2,...vn},且 v 2 v 3 . . . v n v_2v_3...v_n v2v3...vn D D D 中的一条路,若 ( v 2 , v 1 ) ∈ A ( D ) , ( v 1 , v n ) ∈ A ( D ) (v_2,v_1) \in A(D),(v_1,v_n) \in A(D) (v2,v1)A(D),(v1,vn)A(D),则 D D D 必为有向半 H a m i l t o n Hamilton Hamilton 图。该说法( )
A.正确 B.错误

9.设 D D D 是强连通简单有向图, v ≥ 3 v \geq 3 v3 ε > ( v − 1 ) ( v − 2 ) + 2 \varepsilon>(v-1)(v-2)+2 ε>(v1)(v2)+2.
证明: D D D 为有向 H a m i l t o n Hamilton Hamilton 图。

第十二次作业

1.完全二部图 K m , n K_{m,n} Km,n 的连通度 K ( K m , n ) = K(K_{m,n})= K(Km,n)=( )。
A.m B.n C.max{m,n} D.min{m,n}

2.轮图是长为 n n n 的圈 C n = v 1 v 2 . . . v n v 1 C_n=v_1v_2...v_nv_1 Cn=v1v2...vnv1,添加顶点 v 0 v_0 v0 及边 v 0 v i ( i = 1 , 2 , . . . , n ) v_0v_i(i=1,2,...,n) v0vi(i=1,2,...,n) 得到的图,记作 W n W_n Wn v 0 v_0 v0称为轮心, C n C_n Cn 称为轮子, v 0 v i ( i = 1 , 2 , . . . , n ) v_0v_i(i=1,2,...,n) v0vi(i=1,2,...,n) 称为辐条。设 n ≥ 4 n \geq 4 n4,则 K ( W n ) = K(W_n)= K(Wn)=( )。
A.2 B.3 C.4 D.n-2

3.设 G G G 如下图所示,则 K ′ ( G ) = K'(G)= K(G)=( )
习题12.3
A.2 B.3 C.4

4. K ′ ( P e t e r s o n ) = K'(Peterson)= K(Peterson)=( )。
A.5 B.4 C.3

5.一个 v ≥ 3 v\geq 3 v3 的图 G G G 2 2 2 连通图,当且仅当 G G G 的任何两个顶点由恰好两条内部不相交的链连接。该说法 ( )
A.正确 B.错误

6.设 G G G v v v 3 3 3 连通图,则存在 G G G 的连杆 e e e,使 G ⋅ e G·e Ge 仍然是 3 3 3 连通图。该说法 ( )
A.正确 B.错误

7.对任何图 G G G 都有 K ( G ) ≤ K ′ ( G ) ≤ δ ( G ) K(G) \leq K'(G) \leq \delta(G) K(G)K(G)δ(G),该说法( )。
A.正确 B.错误

8.对于任何 v ( v ≥ 3 ) v(v \geq 3) v(v3) 阶简单图 G G G,若 G G G 中无割点,则 G G G 中必无割边。该说法( )。
A.正确 B.错误

9.如果 G G G v v v 阶简单图,且 ε > C n − 1 2 \varepsilon>C_{n-1}^{2} ε>Cn12,证明 G G G 必是连通图。

第十三次作业

1.(多选)下列选项中,能够定量刻画图连通性的 ()
A.连通度
B.连通分支个数
C.坚韧度
D.最短链

2.坚韧度越大,连通性越好,该说法( )。
A.正确 B.错误

3.设 G G G 如下图琐事,它是完全二部图 K 2 , 4 K_{2,4} K2,4,则它的坚韧度是( )。
习题13.3
A. 1 2 \frac{1}{2} 21
B. 2 3 \frac{2}{3} 32
C. 2 2 2

4.完全二部图 K m , n K_{m,n} Km,n 中,坚韧度的最大值为( )。
A. 3 2 \frac{3}{2} 23
B. 1 1 1
C.正无穷

5.设 G G G 如下图所示,下列选项中( )是它的坚韧集。
习题13.5
A. { v 1 , v 2 , v 5 , v 6 } \{v_1,v_2,v_5,v_6\} {v1,v2,v5,v6}
A. { v 1 , v 2 } \{v_1,v_2\} {v1,v2}
A. { v 1 , v 3 } \{v_1,v_3\} {v1,v3}
D. { v 3 , v 4 } \{v_3,v_4\} {v3,v4}

6.设 G G G 如下图所示,下列选项中( )是它的边坚韧集。
习题13.6
A. E ( G ) E(G) E(G)
B. { v 1 v 3 , v 1 v 4 } \{v_1v_3,v_1v_4\} {v1v3,v1v4}
C. { v 2 v 3 , v 2 v 4 } \{v_2v_3,v_2v_4\} {v2v3,v2v4}
D. { v 1 v 3 , v 2 v 3 , v 5 v 3 , v 6 v 3 } \{v_1v_3,v_2v_3,v_5v_3,v_6v_3\} {v1v3,v2v3,v5v3,v6v3}

7.设 T T T 是树, Δ \Delta Δ 表示 T T T 的最大度, δ \delta δ 表示 T T T 的最小度,则它的坚韧度 t ( T ) = t(T)= t(T)=( )
A. 1 Δ \frac{1}{\Delta} Δ1
B. Δ \Delta Δ
C. 1 δ \frac{1}{\delta} δ1
D. δ \delta δ

8.对于任何非平凡连通图 G G G,都有 K ′ ( G ) 2 < t ′ ( G ) < K ′ ( G ) \frac{K'(G)}{2} < t'(G) < K'(G) 2K(G)<t(G)<K(G),该说法( )。
A.正确·B.错误

9.构造一个六阶且边数最多的简单图 G G G,使得 t ( G ) = 3 2 t(G)=\frac{3}{2} t(G)=23.

第十四次作业

1.设 G G G 如图所示,下列选项中是独立集的为( )。
习题14.1
A. { v 1 , v 3 , v 7 } \{v_1,v_3,v_7\} {v1,v3,v7}
B. { v 4 , v 6 , v 8 } \{v_4,v_6,v_8\} {v4,v6,v8}
C. { v 3 , v 6 , v 9 } \{v_3,v_6,v_9\} {v3,v6,v9}
D. { v 4 , v 5 , v 6 , v 7 } \{v_4,v_5,v_6,v_7\} {v4,v5,v6,v7}

2. S S S 是图 G G G 的团当且仅当 S S S G G G 的补图 G ‾ \overline{G} G的独立集。该说法( )。
A.正确 B.错误

3.设 G G G 如图所示,下列选项中是极大独立集的为( )。
习题14.3
A. { v 1 } \{v_1\} {v1}
B. { v 2 } \{v_2\} {v2}
C. { v 3 } \{v_3\} {v3}
D. { v 4 } \{v_4\} {v4}

4.设 G G G 如图所示,下列选项中覆盖为( )。
习题14.4
A. { v 1 , v 3 , v 7 , v 10 } \{v_1,v_3,v_7,v_{10}\} {v1,v3,v7,v10}
B. { v 1 , v 2 , v 5 , v 6 , v 8 , v 9 , v 10 } \{v_1,v_2,v_5,v_6,v_8,v_9,v_{10}\} {v1,v2,v5,v6,v8,v9,v10}
C. { v 1 , v 2 , v 4 , v 6 , v 7 , v 10 } \{v_1,v_2,v_4,v_6,v_7,v_{10}\} {v1,v2,v4,v6,v7,v10}
D. { v 4 , v 7 , v 10 } \{v_4,v_7,v_{10}\} {v4,v7,v10}

5.设 G G G 如图所示,则 β ( G ) = \beta(G)= β(G)=( )。
图片14.5
A.6 B.5 C.4 D.3

6.下列各式正确的是( )。
A. ( v 1 ‾ + v 2 ‾ ) ( v 1 ‾ + v 3 ‾ ) = v 1 ‾ ⋅ v 3 ‾ + v 2 ‾ ⋅ v 3 ‾ (\overline{v_1}+\overline{v_2})(\overline{v_1}+\overline{v_3})=\overline{v_1}·\overline{v_3}+\overline{v_2}·\overline{v_3} (v1+v2)(v1+v3)=v1v3+v2v3
B. ( v 1 ‾ + v 2 ‾ ) ( v 1 ‾ + v 3 ‾ ) = v 1 ‾ ⋅ v 2 ‾ + v 2 ‾ ⋅ v 3 ‾ (\overline{v_1}+\overline{v_2})(\overline{v_1}+\overline{v_3})=\overline{v_1}·\overline{v_2}+\overline{v_2}·\overline{v_3} (v1+v2)(v1+v3)=v1v2+v2v3
C. ( v 1 ‾ + v 2 ‾ ) ( v 1 ‾ + v 3 ‾ ) = v 1 ‾ ⋅ v 2 ‾ + v 1 ‾ (\overline{v_1}+\overline{v_2})(\overline{v_1}+\overline{v_3})=\overline{v_1}·\overline{v_2}+\overline{v_1} (v1+v2)(v1+v3)=v1v2+v1
D. ( v 1 ‾ + v 2 ‾ ) ( v 1 ‾ + v 3 ‾ ) = v 2 ‾ ⋅ v 3 ‾ + v 1 ‾ (\overline{v_1}+\overline{v_2})(\overline{v_1}+\overline{v_3})=\overline{v_2}·\overline{v_3}+\overline{v_1} (v1+v2)(v1+v3)=v2v3+v1

7.设 ϕ = v 1 v 2 + v 1 v 3 + v 1 v 4 + v 3 v 4 \phi=v_1v_2+v_1v_3+v_1v_4+v_3v_4 ϕ=v1v2+v1v3+v1v4+v3v4,则 ϕ ‾ = \overline{\phi}= ϕ=( )。
A. v 1 ‾ ⋅ v 4 ‾ + v 1 ‾ ⋅ v 3 ‾ + v 2 ‾ ⋅ v 3 ‾ ⋅ v 4 ‾ \overline{v_1}·\overline{v_4}+\overline{v_1}·\overline{v_3}+\overline{v_2}·\overline{v_3}·\overline{v_4} v1v4+v1v3+v2v3v4
B. v 1 ‾ ⋅ v 2 ‾ + v 1 ‾ ⋅ v 3 ‾ + v 1 ‾ ⋅ v 4 ‾ \overline{v_1}·\overline{v_2}+\overline{v_1}·\overline{v_3}+\overline{v_1}·\overline{v_4} v1v2+v1v3+v1v4
C. v 1 ‾ ⋅ v 4 ‾ + v 1 ‾ ⋅ v 3 ‾ + v 2 ‾ ⋅ v 3 ‾ ⋅ v 4 ‾ + v 1 ‾ ⋅ v 2 ‾ ⋅ v 3 ‾ \overline{v_1}·\overline{v_4}+\overline{v_1}·\overline{v_3}+\overline{v_2}·\overline{v_3}·\overline{v_4}+\overline{v_1}·\overline{v_2}·\overline{v_3} v1v4+v1v3+v2v3v4+v1v2v3
D. v 1 ‾ ⋅ v 2 ‾ + v 1 ‾ ⋅ v 3 ‾ + v 1 ‾ ⋅ v 4 ‾ + v 1 ‾ ⋅ v 2 ‾ ⋅ v 3 ‾ \overline{v_1}·\overline{v_2}+\overline{v_1}·\overline{v_3}+\overline{v_1}·\overline{v_4}+\overline{v_1}·\overline{v_2}·\overline{v_3} v1v2+v1v3+v1v4+v1v2v3

8.设 G G G 如图所示,通过布尔变量运算的方法,可求出它的覆盖数 β ( G ) = \beta(G)= β(G)=___。
习题14.8
9.设 G G G 如图所示,通过布尔变量运算的方法,求出它的所有极大独立集。
习题14.9

第十五次作业

1.拉姆塞数 r ( 3 , 3 ) = r(3,3)= r(3,3)=( )
A.6 B.14 C.9 D.18

2.拉姆塞数 r ( 3 , 4 ) = r(3,4)= r(3,4)=( )
A.6 B.14 C.9 D.18

3.拉姆塞数 r ( 4 , 4 ) = r(4,4)= r(4,4)=( )
A.6 B.14 C.9 D.18

4.拉姆塞数 r ( 3 , 5 ) = r(3,5)= r(3,5)=( )
A.6 B.14 C.9 D.18

5.下列各说法中正确的是()
A.任何有 6 6 6 个人的聚会,如果没有三个人互相不认识,则一定也没有互相都认识的三个人
B.任何有 6 6 6 个人的聚会,如果没有三个人互相不认识,则至少有三个人互相都认识
C. r ( k , I ) ≤ r ( k − 1 , 1 ) + r ( k , l − 1 ) r(k,I)\leq r(k -1,1) + r(k,l-1) r(k,I)r(k1,1)+r(k,l1)
D. r ( k , 1 ) ≤ r ( k − 1 , l − 1 ) + r ( k − 2 , l − 2 ) r(k,1)\leq r(k -1,l-1)+r(k -2,l-2) r(k,1)r(k1,l1)+r(k2,l2)

6.(多选)关于 T u r a n Turan Turan T v , k T_{v,k} Tv,k,下列说法正确的是( )
A.它是不含 k + 1 k +1 k+1 团边数最多的图
B.它是完全 k k k 部图
C.它是不含 k k k 团边数最多的图
D. α ( T v , k ) = v k \alpha(T_{v,k})=\frac{v}{k} α(Tv,k)=kv向上取整
E. α ( T v , k ) = v k \alpha(T_{v,k})=\frac{v}{k} α(Tv,k)=kv向下取整

7. T 26 , 4 = T_{26,4}= T26,4=___.

8.将正整数集 { 1 , 2 , r ( 3 , 3 ) } \{1,2,r(3,3)\} {1,2,r(3,3)} 任意划分成两个子集 A 1 , A 2 A_1,A_2 A1,A2,则 A 1 , A 2 A_1,A_2 A1,A2 中至少有一个不是无和集。该说法 ___(正确或错误)(注:如果集合 A A A 中的任何两个元素(可以是相同的)之和都不在 A A A 中,则称 A A A 无合集)。

9.在9个人的人群中,有一个认识另外2个人,有两个人每人认识另外4个人,有四个人每人认识另外5个人,余下的两个人每人认识另外6个人。证明:有三个人,他们相互认识。

第十六次作业

1.若把 G G G 的每个顶点都染上颜色,使任何一对相邻顶点的颜色都不相同,则这种染色方法为正常着色。该说法( )。
A.正确 B.错误

2.在图 G G G k k k 着色中,顶点染成相同颜色当且仅当它们属于同一个( )
A.覆盖
B.独立集
C.团

3.如下图 G G G 是著名的 P e t e r s o n Peterson Peterson 图,则 χ ( G ) = \chi(G)= χ(G)=( )。
习题15.3
A.4 B.3 C.2 D.1

4.设 G G G 为无环图且 ε ( G ) ≥ 1 \varepsilon(G) \geq 1 ε(G)1,下列选项正确的是( )
A. χ ( G ) ≤ 1 \chi(G) \leq 1 χ(G)1
B. χ ( G ) ≥ 2 \chi(G) \geq 2 χ(G)2
C. χ ( G ) = 2 \chi(G) = 2 χ(G)=2
D. χ ( G ) ≤ 2 \chi(G) \leq 2 χ(G)2

5.若图 G G G 存在 k k k 着色,则下列各式中成立的是( )。
A. χ ( G ) ≥ k \chi(G) \geq k χ(G)k
B. χ ( G ) ≤ k \chi(G) \leq k χ(G)k
C. k ⋅ α ( G ) ≤ v k·\alpha(G) \leq v kα(G)v
D. k ⋅ α ( G ) ≥ v k·\alpha(G) \geq v kα(G)v

6.设 G G G 如下图所示,则 χ ( G ) = \chi(G)= χ(G)=( )。
习题15.6
A.3 B.4 C.2 D.6

7.设 G G G 是简单连通图,且不是正则图,则有 χ ( G ) ≤ Δ ( G ) \chi(G) \leq \Delta(G) χ(G)Δ(G),该说法( )。
A.正确 B.错误

8.设 G G G 是连通的正则简单图,且含有 1 1 1 顶点割或 2 2 2 顶点割,则 χ ( G ) ≤ Δ ( G ) \chi(G)\leq \Delta(G) χ(G)Δ(G),该说法( )。
A.正确 B.错误

9.证明:对任何图 G G G 均有 χ ( G ) ≤ 1 + l ( G ) \chi(G) \leq 1 + l(G) χ(G)1+l(G),其中 l ( G ) l(G) l(G) 表示 G G G 中最长链的长度。

第十七次作业

1.设 G G G v v v 阶树 ( v ≥ 2 v \geq 2 v2),则 χ ( G ) = \chi(G)= χ(G)=( )。
A.1 B.2 C. Δ \Delta Δ

2. G G G k k k 可着色的当且仅当( )。
A. π ( G , k ) > 0 \pi(G,k)>0 π(G,k)>0
B. π ( G , k ) < 0 \pi(G,k)<0 π(G,k)<0
C. π ( G , k ) = 0 \pi(G,k)=0 π(G,k)=0
D. π ( G , k ) ≥ 0 \pi(G,k)\geq0 π(G,k)0

3.设 G G G 是简单图。下列各式中不成立的是( )。
A. π ( K v ‾ , k ) = k v \pi(\overline{K_v},k)=k^v π(Kv,k)=kv
B. π ( K v , k ) = k ( k − 1 ) . . . ( k − v + 1 ) \pi(K_v,k)=k(k-1)...(k-v+1) π(Kv,k)=k(k1)...(kv+1)
C. π ( G , k ) = π ( G − e , k ) − π ( G ⋅ e , k ) \pi(G,k)=\pi(G-e,k)-\pi(G·e,k) π(G,k)=π(Ge,k)π(Ge,k)
D. π ( G , k ) = π ( G − e , k ) + π ( G ⋅ e , k ) \pi(G,k)=\pi(G-e,k)+\pi(G·e,k) π(G,k)=π(Ge,k)+π(Ge,k)

4.(多选)Brooks 定理的条件是( )。
A.不是奇圈
B.不是完全图
C.是奇圈或完全图
D.简单图

5.设 v v v 阶简单图 G G G 是树,则下列关于色多项式 π ( G , k ) \pi(G,k) π(G,k) 的说法正确的是( )
A. ϕ ( G , k ) = k ( k − 1 ) v − 1 \phi(G,k)=k(k-1)^{v-1} ϕ(G,k)=k(k1)v1
B. ϕ ( G , k ) = k ( k − 1 ) . . . ( k − v + 1 ) \phi(G,k)=k(k-1)...(k-v+1) ϕ(G,k)=k(k1)...(kv+1)
C.不仅与顶点数 v v v 有关,还与边的分布有关

6.简单图 G G G 是连通二部图,当且仅当 π ( G , k ) \pi(G,k) π(G,k) 中的 a v − 1 a_{v-1} av1 为( )。
A.为0
B.为偶数
C.为奇数
D.为非零整数

7.现有五趟航班,起飞时间如下表所示。若两趟航班起飞时间小于1小时,则它们不能共用同一个登机口。为求出最少登机口个数,建立图模型 G G G,则 π ( G , k ) = \pi(G,k)= π(G,k)=( )
习题17.7
A. k ( k − 1 ) 2 ( k − 2 ) 2 k(k-1)^2(k-2)^2 k(k1)2(k2)2
B. k 2 ( k − 2 ) ( k − 3 ) ( k − 1 ) k^2(k-2)(k-3)(k-1) k2(k2)(k3)(k1)
C. k 2 ( k − 1 ) 2 ( k − 2 ) k^2(k-1)^2(k-2) k2(k1)2(k2)
C. k ( k − 1 ) 2 ( k − 2 ) 3 k(k-1)^2(k-2)^3 k(k1)2(k2)3

8.设图 G G G 的色多项式 π ( G , k ) = k 3 ( k − 1 ) 4 \pi(G,k)=k^3(k-1)^4 π(G,k)=k3(k1)4,则 v ( G ) = v(G)= v(G)= ___, ε ( G ) = \varepsilon(G)= ε(G)= ___, ω ( G ) \omega(G) ω(G)= ____。

9.设 G G G 如下图所示,求 π ( G , k ) \pi(G,k) π(G,k)
习题17.9

第十八次作业

1.设 G G G 如下图所示,则下列选项中支配集是( )。
习题18.1
A. { v 1 , v 6 } \{v_1,v_6\} {v1,v6}
B. { v 4 , v 5 } \{v_4,v_5\} {v4,v5}
C. { v 3 , v 4 } \{v_3,v_4\} {v3,v4}
D. { v 2 , v 3 } \{v_2,v_3\} {v2,v3}

2.设 G G G 如下图所示,则下列选项中极小支配集是( )。
习题18.2
A. { v 1 , v 6 , v 5 } \{v_1,v_6,v_5\} {v1,v6,v5}
B. { v 2 , v 3 , v 4 } \{v_2,v_3,v_4\} {v2,v3,v4}
C. { v 1 , v 2 , v 3 , v 6 } \{v_1,v_2,v_3,v_6\} {v1,v2,v3,v6}
D. { v 1 , v 2 , v 3 } \{v_1,v_2,v_3\} {v1,v2,v3}

3.设 G G G 如下图所示,则 γ ( G ) = \gamma(G)= γ(G)=( )
习题18.3
A.4
B.3
C.2
D.1

4.设 G G G 如下图所示,则下列选项中是独立支配集的是( )。
习题18.4
A. { v 1 , v 6 , v 4 } \{v_1,v_6,v_4\} {v1,v6,v4}
B. { v 2 , v 3 , v 6 } \{v_2,v_3,v_6\} {v2,v3,v6}
C. { v 1 , v 3 , v 6 } \{v_1,v_3,v_6\} {v1,v3,v6}
D. { v 1 , v 3 , v 4 } \{v_1,v_3,v_4\} {v1,v3,v4}

5.下列说法中正确的是( )。
A.S是G的独立支配集当且仅当S是G的极大独立集
B.S是G的独立支配集当且仅当S是G的极大支配集
C.S是G的独立支配集当且仅当S是G的极小独立集
D.S是G的独立支配集当且仅当S是G的极小支配集

6.(多选)设 S S S 为简单图 G G G 的支配集,则 S S S 为极小支配集当且仅当 S S S 中的每个顶点 v v v 满足下列性质( )之一。
A.存在 u ∈ S ‾ u\in \overline{S} uS,使 N ( u ) ∩ S = v N(u) \cap S = {v} N(u)S=v
B.存在 u ∈ S ‾ u\in \overline{S} uS,使 N ( u ) ∩ S = ∅ N(u) \cap S = \emptyset N(u)S=
C. S ∩ N ( v ) = ∅ S \cap N(v)=\emptyset SN(v)=
D. S ∩ N ( v ) ≠ ∅ S \cap N(v) \neq \emptyset SN(v)=

7.设 G G G 是没有孤立顶点的简单图, S S S G G G 的极小支配集, S ‾ \overline{S} S S S S 的补集,则 S ‾ \overline{S} S也是 G G G 的支配集。该说法( )
A.正确
B.错误

8.设 G G G 如下图所示,则 { v 1 v 2 , v 3 v 6 , v 4 v 5 } \{v_1v_2,v_3v_6,v_4v_5\} {v1v2,v3v6,v4v5} G G G 的最大独立集,也是 G G G 的边覆盖。该说法( )。习题18.8
A.正确
B.错误

9.设 G G G 如下图所示,用布尔变量的方法求出图 G G G 的所有极小支配集。
习题18.9

  • 22
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值