Namomo Spring Camp 每日一题 Week1 Day3 Dis

Namomo Spring Camp 每日一题 Week1 Day3 Dis

Problem Statement

给出 n n n 个点的一棵树, 每个点有各自的点权, 多次询问两个点简单路径所构成点集的异或和.

Solution

  • 树是 n n n个点 n − 1 n-1 n1条边的联通图.

  • 树上两个点之间的路径是唯一的.

我们不妨设 1 1 1是树的根, 第 i i i个点的点权为 a i a_i ai, b i b_i bi 1 1 1到点 i i i上点权的异或和. 我们设 P a t h ( u , v ) Path(u,v) Path(u,v)表示 u u u v v v路径的异或和.

P a t h ( u , v ) = P a t h ( u , l c a u , v )    x o r    P a t h ( l c a u , v , v )    x o r    a l c a u , v Path(u,v)=Path(u,lca_{u,v})\;xor\;Path(lca_{u,v},v)\;xor\;a_{lca_{u,v}} Path(u,v)=Path(u,lcau,v)xorPath(lcau,v,v)xoralcau,v.

指的注意的是我们要在最后再次异或 a l c a a_{lca} alca呢, 因为对于任意的数 x    x o r    x = 0 x\;xor\;x=0 xxorx=0. 如果我们只计算 P a t h ( u , l c a u , v )    x o r    P a t h ( l c a u , v , v ) Path(u,lca_{u,v})\;xor\;Path(lca_{u,v},v) Path(u,lcau,v)xorPath(lcau,v,v) l c a lca lca的点权会被异或两次, 所以我们需要再次异或 a l c a u , v a_{lca_{u,v}} alcau,v.

需要对比的是, 这类问题点权和边权处理是不一样的. 如果是点权上述问题等价于 P a t h ( u , v ) = P a t h ( u , l c a ) + P a t h ( l c a , v ) − P a t h ( 1 , l c a ) − P a t h ( 1 , F a t h e r l c a ) Path(u,v)=Path(u,lca)+Path(lca,v)-Path(1,lca)-Path(1,Father_{lca}) Path(u,v)=Path(u,lca)+Path(lca,v)Path(1,lca)Path(1,Fatherlca).

边权的话上述问题等价于:

P a t h ( u , v ) = P a t h ( u , l c a ) + P a t h ( l c a , v ) − 2 × P a t h ( 1 , l c a ) Path(u,v)=Path(u,lca)+Path(lca,v)-2\times Path(1,lca) Path(u,v)=Path(u,lca)+Path(lca,v)2×Path(1,lca).

这是因为我们在作前缀和的时候, 边权会记录到它的子节点上, 并不会导致计算贡献时的重复和损失.

  • 其中 + / − +/- +/为广义的运算/或者你可以理解为群论中的运算, 其中 + + + − - 的逆运算即可.

对于上述问题我们只需要预处理处 O ( n ) O(n) O(n)复杂度 ( D f s 即 可 ) (Dfs即可) (Dfs)内预处理 b i = P a t h ( 1 , i ) b_i=Path(1,i) bi=Path(1,i). 剩下每个询问只需要计算出 l c a lca lca即可.

Code(这里直接用了求树链剖分 LCA的板子)

# define Fast_IO std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
# include "unordered_map"
# include "algorithm"
# include "iostream"
# include "cstdlib"
# include "cstring"
# include "cstdio"
# include "vector"
# include "bitset"
# include "queue"
# include "cmath"
# include "map"
# include "set"

using namespace std;



namespace LCA_Tree_Chain_Subdivision{
	# define maxm 500010
	struct edge{
		int To;
		int Next;
		int Value;
	}Edge[maxm<<1];
	int Dis[maxm],Deep[maxm],Size[maxm],Father[maxm],Son[maxm],Top[maxm];
	int head[maxm],tot;
	inline void Init_LCA(int N){
		static int i;tot=0;
		for(i=1;i<=N;i++) Dis[i]=Deep[i]=Size[i]=Father[i]=Son[i]=Top[i]=head[i]=false;
		return;
	}
	inline void Add_Edge(int From,int To,int Value=0){
		Edge[++tot]=(edge){To,head[From],Value},head[From]=tot;
		return;
	}
	inline void Insert_Edge(int From,int To,int Value=0){
		Add_Edge(From,To,Value),Add_Edge(To,From,Value);
		return;
	}
	void Dfs1(int Now){
		int i,To;
		Deep[Now]=Deep[Father[Now]]+1;
		Size[Now]=1;
		for(i=head[Now];i;i=Edge[i].Next){
			To=Edge[i].To;
			if(To==Father[Now]) continue;
			Father[To]=Now;
			Dis[To]=Dis[Now]+Edge[i].Value;
			Dfs1(To);
			Size[Now]+=Size[To];
			Son[Now]=Size[Son[Now]]>Size[To]?Son[Now]:To;
		}
		return;
	}
	void Dfs2(int Now,int top){
		int To;
		Top[Now]=top;
		if(Son[Now]) Dfs2(Son[Now],top);
		for(int i=head[Now];i;i=Edge[i].Next){
			To=Edge[i].To;
			if(To==Father[Now] || To==Son[Now]) continue;
			Dfs2(To,To);
		}
		return;
	}
	inline int LCA(int x,int y){
		while(Top[x]!=Top[y]){
			if(Deep[Top[x]]>=Deep[Top[y]]){
				x=Father[Top[x]];
			}else{
				y=Father[Top[y]];
			}
		}
		return Deep[x]<Deep[y]?x:y;
	}
	# undef maxm
}using namespace LCA_Tree_Chain_Subdivision;

const int maxm=2e5+10;
int N,M,A[maxm],B[maxm];
vector<int> E[maxm];

void Dfs(int Now,int Father){
	for(auto To:E[Now]){
		if(To==Father) continue;
		B[To]^=B[Now];
		Dfs(To,Now);
	}return;
}

int main(){
	static int i,U,V;
	scanf("%d%d",&N,&M);
	for(i=1;i<=N;i++) scanf("%d",&A[i]),B[i]=A[i];
	for(i=1;i< N;i++){
		scanf("%d%d",&U,&V);
		E[U].push_back(V);
		E[V].push_back(U);
		Insert_Edge(U,V);
	}Dfs(1,1);Dfs1(1),Dfs2(1,1);
	for(i=1;i<=M;i++){
		scanf("%d%d",&U,&V);
		printf("%d\n",A[LCA(U,V)]^B[U]^B[V]);
	}
	return 0;
}

Link

Link 1: Daimayuan Problem 451

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值