本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
这篇文章的标题表明研究的主题是与电动汽车(EV)充电相关的配电网改造策略,特别是关注如何提升可开放容量。以下是对标题中关键词的解读:
-
电动汽车: 指的是使用电池作为动力源的汽车,即电池电动汽车(Battery Electric Vehicle,BEV)或混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)。这类汽车通常需要进行充电,而与其充电有关的配电网容量成为研究关注的焦点。
-
配电网: 是电力系统中的一个部分,负责将电力从变电站传送到最终用户的电力系统。改善配电网以适应电动汽车充电需求可能包括设备升级、智能化控制系统的引入等。
-
可开放容量提升: 指的是提高配电网中可供新设备、新负荷接入的容量。在这个语境下,主要是指为电动汽车充电提供更多的容量,以满足不断增长的电动汽车充电需求。
-
改造策略: 暗示了研究的重点是提出一系列方案或方法,通过改变配电网的结构、设备、管理方式等,来应对电动汽车充电需求,确保可靠、高效、可持续的配电服务。
综合起来,这篇文章可能探讨了如何制定针对电动汽车充电需求的配电网改造策略,以提升配电网的可开放容量,确保它能够有效地应对不断增长的电动汽车充电需求。
摘要:配电网可开放容量代表着现有配电网条件下最大可接入的负荷容量,是评估配电网规划与运行效果的重要指标之一。为应对电动汽车大规模无序充电导致可开放容量大幅度下降的现象,提出一种考虑电动汽车充电模式的配电网网格改造方法,通过优化网格拓扑结构以及有限投资内线路扩容与储能投入的最佳数量、位置和类型,实现可开放容量的最优提升。首先,利用蒙特卡洛法生成电动汽车无序充电场景,并搭建基于充电时序优化的电动汽车有序充电模型;其次,搭建基于网络重构、线路扩容及储能投资协同的配电网可开放容量提升改造模型;然后,通过Benders分解算法降低模型复杂度,并调用商业求解器求解;最后,以某城市实际配电网网格为算例,验证了所提可开放容量提升改造策略的有效性。
这段摘要详细介绍了一项关于配电网改造的研究,重点是提高配电网的可开放容量以适应电动汽车充电的需求。以下是摘要中的关键内容解读:
-
配电网可开放容量: 这是指在现有配电网条件下可以接入的最大负载容量。它是评估配电网规划与运行效果的重要指标之一,影响着配电系统的可靠性和稳定性。
-
电动汽车大规模无序充电: 电动汽车的充电行为对配电网的负载产生了影响,尤其是当电动汽车数量大、充电行为无序时,可能导致配电网的负载剧烈波动,影响系统的稳定性和可靠性。
-
提出的方法: 为了解决电动汽车充电对配电网的影响,提出了一种考虑电动汽车充电模式的配电网改造方法。这个方法包括优化配电网的拓扑结构,确定最佳的内部线路扩容和储能投入的数量、位置和类型,以最大程度地提高配电网的可开放容量。
-
研究步骤:
- 使用蒙特卡洛法生成电动汽车无序充电的场景,并建立基于充电时序优化的电动汽车有序充电模型。
- 建立了基于网络重构、线路扩容及储能投资协同的配电网可开放容量提升改造模型。
- 通过Benders分解算法降低了模型的复杂度,并利用商业求解器进行求解。
- 最后,以某城市实际配电网为例,验证了所提出的可开放容量提升改造策略的有效性。
综合来看,该研究通过建立模型和采用优化算法,提出了一种系统性的配电网改造方案,旨在解决电动汽车充电对配电网可靠性和稳定性带来的挑战,为实现可持续的电力系统提供了新的思路和方法。
关键词: 可开放容量;配电网改造;有序充电;线路扩容;储能;网络重构;
这些关键词涵盖了配电网改造和优化的关键方面,特别是在应对电动汽车充电需求方面。以下是对这些关键词的解读:
-
可开放容量: 表示在当前配电网条件下可以接入的最大负载容量。提高可开放容量意味着配电网可以容纳更多的负载,而不会过载或导致系统不稳定。
-
配电网改造: 指对配电网进行结构、设备或运营方面的变革,以提高其效率、可靠性和可持续性。这包括改变配电网的拓扑结构、增加设备容量、优化运行策略等。
-
有序充电: 指对电动汽车进行充电时,按照一定的优化策略进行管理,以减少对配电网的冲击和负荷波动。有序充电可以通过调整充电时段、充电功率和充电位置等方式实现。
-
线路扩容: 指通过增加或升级配电网中的电力线路,以增加其输电能力和负载容量。线路扩容是提高配电网可靠性和适应性的重要手段。
-
储能: 指在配电网中部署储能设备,用于存储电能并在需要时释放电能。储能系统可以平衡负载和供电之间的差异,提高系统的稳定性和响应能力。
-
网络重构: 指重新设计配电网的拓扑结构,包括调整线路连接方式、增加或减少供电节点等,以优化系统的运行效率和负载分布。
综合来看,这些关键词代表了在配电网改造和优化过程中需要考虑的重要因素,可以帮助实现配电网的可持续发展和适应未来电力需求的挑战。
仿真算例:本文算例基于我国中部某城市的实际配电网 网格进行构建,如附录图B1所示。该配电网网格 在配网供电区域划分基础上,与城乡控制性详细规 划、城乡区域性用地规划等市政规划及行政区域划 分相衔接[35],共包含4座具有10kV出线的110kV 变电站、4个供电单元、72个节点、86条支路(部 分支路含联络开关),具体拓扑结构如附录图 B2 所示。网格各节点负荷峰值及线路相关参数见附录 表B1、B2。按照供电节点的不同,网格可划分为 A、B、C、D四个供电单元。实际中,现有负荷在 空间上呈现聚集分布,且不同区域的负荷特性存在 差异,日负荷曲线也有着明显区别,因此设定 A 供电单元为商业区,B、C 供电单元为居民区,D 供电单元为工业区,典型日负荷如附录图B3(a)所 示[36],且设定新增负荷也依此负荷特性增长。网 格共含有 4 个集中充电站,分别位于 8、33、55 和62号节点处。该网格存在公交车、出租车和私家车三种不同 类型的电动汽车。公交车型号选用比亚迪K9,电 池容量为324kWh,续航里程为250km。出租车和 私家车型号选用比亚迪E6,电池容量为82kWh, 续航里程为400km。为满足运营需求,公交车和出 租车需一天两充,充电时间集中在中午换班时段和 晚上下班时段,充电模式皆为快充,充电功率分别 为 108kW 和 60kW,需在网格的集中充电站处进 行充电。私家车仅需一天一充,充电模式为慢充, 功率为7.8kW,在居民区、商业区和工业区的停车 场即可充电。 假设该网格每个集中充电站一天内服务的公 交车和出租车数量分别为6辆和20辆。除集中充 电站外每个节点一天内服务的私家车数量为 50 辆。假定三种类型电动车充电效率皆为0.9,车主 期望SOC皆为0.95。电动汽车充电负荷其余参数 如附录表B3所示,其中起始充电时刻服从正态分 布,日行驶里程服从对数正态分布,部分数据来源 于文献[37]。
仿真程序复现思路:
要仿真该算例,我们可以采取以下步骤:
-
建立配电网模型: 根据描述和附录提供的信息,建立配电网的拓扑结构模型,包括节点、线路、变电站等,并设置各个节点的负载数据。
-
确定充电站位置和充电车辆: 根据描述确定充电站的位置和各类电动车的数量和类型。
-
设定电动车充电需求和充电模式: 根据描述设定电动车的充电需求,包括充电频率、充电时间段、充电功率等。
-
仿真电动车充电行为: 根据设定的充电需求和模型参数,仿真电动车在配电网中的充电行为,包括充电时段、充电功率等。
-
分析配电网的稳定性和负载情况: 根据仿真结果分析配电网在电动车充电情况下的负载情况,检查是否存在过载或其他稳定性问题。
以下是一个简化的Python程序示例,用于仿真电动车在配电网中的充电行为:
import numpy as np
import matplotlib.pyplot as plt
# 仿真参数设置
num_nodes = 72
num_ev_types = 3
num_charging_stations = 4
num_days = 30
# 电动车信息
ev_types = ['公交车', '出租车', '私家车']
ev_battery_capacity = [324, 82, 82] # kWh
ev_range = [250, 400, 400] # km
ev_charging_power = [108, 60, 7.8] # kW
ev_charging_frequency = [2, 2, 1] # 每天充电次数
# 配电网信息
load_profile = np.random.rand(num_nodes, num_days) * 100 # 随机负载数据,单位为kW
# 初始化电动车充电负载
ev_charging_load = np.zeros((num_nodes, num_days))
# 模拟电动车充电行为
for ev_type in range(num_ev_types):
for charging_station in range(num_charging_stations):
# 计算每个充电站的充电需求
ev_count = 6 if ev_type == 0 else 20 # 公交车和出租车数量
charging_load = ev_count * ev_charging_power[ev_type]
# 将充电需求分配到充电站节点
start_node = charging_station * (num_nodes // num_charging_stations)
end_node = (charging_station + 1) * (num_nodes // num_charging_stations)
ev_charging_load[start_node:end_node, :] += charging_load
# 模拟电动车充电效率和车主期望SOC
ev_charging_efficiency = 0.9
ev_owner_soc_target = 0.95
ev_charging_load *= (1 / ev_charging_efficiency) / ev_owner_soc_target
# 模拟配电网总负载
total_load = load_profile.mean(axis=0) + ev_charging_load.mean(axis=0)
# 绘制仿真结果
plt.figure(figsize=(12, 8))
# 绘制每个节点的平均负载
for node in range(num_nodes):
plt.plot(load_profile[node, :], label=f'节点 {node+1}')
# 绘制电动车充电负载
for node in range(num_nodes):
plt.plot(ev_charging_load[node, :], linestyle='dashed', label=f'充电节点 {node+1}')
# 绘制总负载
plt.plot(total_load, linestyle='dashed', color='black', linewidth=2, label='总负载')
plt.xlabel('天数')
plt.ylabel('负载 (kW)')
plt.title('配电网负载仿真')
plt.legend()
plt.grid(True)
plt.show()
这个示例程序模拟了配电网的负载情况,包括每个节点的平均负载、电动车的充电负载以及总负载。请注意,此程序仅提供了一个基本的框架,实际应用中可能需要更多的调整和改进,以满足具体需求。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html