文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑区域间频率动态差异及频率响应全过程的分布鲁棒机组组合》

本文介绍了一种针对大规模新能源并网电力系统的新调度方法,通过考虑区域间频率动态差异和频率响应全过程,利用数据驱动的分布鲁棒优化策略,以提高系统的频率安全稳定性。研究还涉及新能源频率响应模型建立、关键指标解析表达式推导和仿真实验验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这份文件是一篇深入研究电力系统频率安全稳定性的学术论文,特别关注了在大规模新能源发电并网的背景下,如何通过分布鲁棒机组组合调度方法来提升系统的频率安全。以下是对论文内容的详细整理:

研究背景与挑战

  • 新能源并网:随着风电和光伏等可再生能源的大规模接入,电力系统的传统运行模式面临挑战,尤其是在频率安全方面。
  • 频率安全重要性:电力系统的正常运行依赖于稳定的系统频率,任何频率偏差都可能导致系统不稳定甚至大规模停电。
  • 传统调度局限:传统的机组组合调度方法未能充分考虑新能源发电的不确定性和弱调节特性,难以满足新型电力系统的安全运行需求。

研究目的与创新

  • 目的:提出一种新的机组组合调度方法,能够在考虑区域间频率动态差异及频率响应全过程的基础上,提高电力系统的频率安全稳定性。
  • 创新点
    • 新能源频率响应建模:建立了风电和光伏机组的频率响应特性模型,包括惯性控制和功率备用控制,以更准确地模拟新能源机组的动态行为。
    • 区域间频率动态差异:考虑了由于调频资源分布不均导致的区域间频率动态差异,为电力系统调度提供了更全面的视角。
    • 全过程中的关键指标:推导了系统惯性响应、一次调频及二次调频全过程中的关键指标线性化解析表达式,为调度决策提供了定量依据。
    • 数据驱动分布鲁棒优化:采用数据驱动的方法构建分布鲁棒优化模型,有效处理新能源出力的不确定性,提高了调度方案的鲁棒性。

研究方法与模型构建

  • 新能源机组建模:详细建模了风电机组的桨距角控制和光伏机组的功率备用控制,以及它们在不同风速和辐照度条件下的频率响应特性。
  • 频率动态约束:基于电力系统摇摆方程和自动发电控制(AGC)思想,推导出考虑区域间差异的频率响应全过程安全约束。
  • 分布鲁棒优化:构建了嵌入频率动态约束的机组组合模型,采用改进的列和约束生成算法进行有效求解。

研究成果与验证

  • 算例分析:通过在改进的两区域12节点系统和IEEE RTS-79系统上的测试,验证了所提模型的有效性。
  • 模型适用性:所提模型不仅适用于理论分析,也适用于实际电力系统的调度,能够充分保障多区域系统的频率安全稳定。

结论与未来工作

  • 结论:所提出的分布鲁棒机组组合调度方法能够有效提升包含大规模新能源的电力系统在不确定性条件下的频率安全稳定性。
  • 未来工作:将进一步改进模型,考虑新能源机组的快速调频资源,如电池储能系统,并拓展至其他电力系统优化模型中。

为了复现论文中提出的考虑区域间频率动态差异及频率响应全过程的分布鲁棒机组组合调度方法的仿真,我们需要遵循以下步骤,并以伪代码的形式表示出来:

复现思路:

  1. 初始化参数:设置电力系统的初始状态,包括新能源发电的预测出力、火电机组的参数、系统负荷需求等。

  2. 建立新能源机组模型:根据风电和光伏的特性,建立惯性控制与功率备用控制的模型。

  3. 推导频率动态约束:基于系统惯性响应、一次调频及二次调频过程,推导出关键指标的线性化解析表达式。

  4. 构建分布鲁棒优化模型:采用数据驱动方法,建立分布鲁棒优化模型,嵌入频率动态约束。

  5. 求解模型:使用改进的列和约束生成算法求解分布鲁棒机组组合模型。

  6. 仿真实验:在不同的电力系统测试用例上运行仿真,包括两区域12节点系统和IEEE RTS-79系统。

  7. 结果分析:分析仿真结果,验证所提模型的有效性,并与现有方法进行比较。

伪代码表示:

# 初始化参数
def initialize_parameters():
    # 设置新能源发电预测出力
    wind_power_forecast = ...
    solar_power_forecast = ...
    # 设置火电机组参数
    thermal_generators_params = ...
    # 设置系统负荷需求
    load_demand = ...

# 建立新能源机组模型
def build_renewable_models(forecasts):
    # 建立风电和光伏的惯性控制与功率备用控制模型
    # 具体建模方法根据论文中的公式和算法实现
    ...

# 推导频率动态约束
def derive_frequency_constraints():
    # 基于系统惯性响应和调频过程推导关键指标的线性化解析表达式
    # 具体推导方法根据论文中的公式和算法实现
    ...

# 构建分布鲁棒优化模型
def build_distributionally_robust_model(constraints):
    # 采用数据驱动方法,构建分布鲁棒优化模型
    # 具体建模方法根据论文中的公式和算法实现
    ...

# 求解模型
def solve_model(model):
    # 使用改进的列和约束生成算法求解模型
    # 具体求解方法根据论文中的公式和算法实现
    ...

# 仿真实验
def simulation_experiment():
    # 初始化参数
    initialize_parameters()
    # 建立新能源机组模型
    renewable_models = build_renewable_models(wind_power_forecast, solar_power_forecast)
    # 推导频率动态约束
    frequency_constraints = derive_frequency_constraints()
    # 构建分布鲁棒优化模型
    robust_model = build_distributionally_robust_model(frequency_constraints)
    # 求解模型
    solution = solve_model(robust_model)
    # 分析结果
    analyze_results(solution)

# 主程序
def main():
    simulation_experiment()

# 运行主程序
if __name__ == "__main__":
    main()

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电网论文源程序

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值