本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
这篇文章的核心内容是关于蓄热电采暖系统的优化配置,特别是考虑到风电消纳和热舒适度弹性的情况。以下是文章的主要点:
-
研究背景:蓄热电采暖在中国西北地区的冬季供暖期间作为一种灵活调节资源,对于提高风电消纳水平和系统运行经济性至关重要。
-
研究目的:提出一种双层优化配置方法,既考虑热舒适度弹性,也注重风电消纳,以实现蓄热电采暖容量的合理规划。
-
方法论:
- 引入预测平均投票(PMV)指数来量化用户的热舒适度。
- 建立基于热舒适度弹性的热平衡区间约束。
- 分析风电消纳和热舒适度弹性对蓄热电采暖容量配置的影响。
- 构建双层优化配置模型,上层以年化总成本最小为目标,下层以典型日运行成本最小为目标。
-
模型构建:
- 上层规划模型:最小化系统的年度总成本,包括投资成本和运行成本。
- 下层运行模型:在给定的蓄热电采暖功率和容量下,最小化系统典型日的运行成本。
-
优化算法:通过上下层迭代求解,得到最优的蓄热电采暖容量配置和系统运行方案。
-
案例分析:使用西北某风电供热项目作为算例,验证了所提方法的有效性。
-
结果:与不考虑热舒适度弹性的情况相比,提出的配置方法可以减少电采暖功率和蓄热装置容量,降低系统年化总成本。
-
结论:所提出的双层优化配置方法能够在保证供暖舒适度的基础上,有效提升风电消纳水平和系统整体经济性。
为了复现蓄热电采暖系统的双层优化配置仿真,我们需要遵循以下步骤,并以程序语言(这里以Python为例)表示关键步骤:
-
定义优化问题:首先定义上层规划模型和下层运行模型的数学模型。
-
数据准备:收集和准备所需的系统参数,如风电预测、负荷需求、设备成本等。
-
PMV指数计算:根据PMV模型计算热舒适度区间。
-
双层优化算法实现:实现双层优化算法,包括上层的规划模型和下层的运行模型。
-
迭代求解:通过迭代求解上下层模型,直到找到最优解。
-
结果分析:分析最优配置结果和系统运行效果。
以下是使用Python语言表示的仿真复现思路的伪代码:
import numpy as np
# 假设已经收集了所需的系统参数和数据
# 定义PMV指数计算函数
def calculate_PMV(indoor_temp, metabolic_rate, clothing_insulation):
# PMV计算公式
return PMV_value
# 定义上层规划模型
def upper_layer_model(heating_capacity, storage_capacity):
# 投资成本计算
investment_cost = calculate_investment_cost(heating_capacity, storage_capacity)
# 运行成本计算(通过下层模型获得)
operation_cost = lower_layer_model(heating_capacity, storage_capacity)
# 总成本计算
total_cost = investment_cost + operation_cost
return total_cost
# 定义下层运行模型
def lower_layer_model(heating_capacity, storage_capacity):
# 根据给定的蓄热电采暖容量,计算典型日运行成本
# 包括弃风成本、机组启停和运行成本等
operation_cost = calculate_operation_cost(heating_capacity, storage_capacity)
return operation_cost
# 双层优化算法实现
def bi_level_optimization(heating_capacity_range, storage_capacity_range):
best_configuration = None
best_cost = np.inf
for heating_capacity in heating_capacity_range:
for storage_capacity in storage_capacity_range:
cost = upper_layer_model(heating_capacity, storage_capacity)
if cost < best_cost:
best_cost = cost
best_configuration = (heating_capacity, storage_capacity)
return best_configuration, best_cost
# 主程序
if __name__ == "__main__":
# 定义蓄热电采暖容量搜索范围
heating_capacity_range = np.arange(min_heating_capacity, max_heating_capacity, step)
storage_capacity_range = np.arange(min_storage_capacity, max_storage_capacity, step)
# 进行双层优化
best_config, min_cost = bi_level_optimization(heating_capacity_range, storage_capacity_range)
# 输出最优配置和最小成本
print(f"最优电采暖容量: {best_config[0]} MW")
print(f"最优蓄热装置容量: {best_config[1]} MWh")
print(f"最小年化总成本: {min_cost} 万元")
# 进一步分析最优配置下的系统运行效果
# ...
请注意,上述代码是一个简化的伪代码表示,实际的程序实现会更加复杂,需要根据具体的数学模型和算法细节进行编写。此外,实际编程中可能会使用特定的优化库,如SciPy、CPLEX或Gurobi等,来处理数学优化问题。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html