👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆
《《《《《《《《更多资源还请持续关注本专栏》》》》》》》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
在多智能体系统中,DMPC可以有效解决智能体之间的冲突和优化问题,例如避免碰撞或减少延迟。每个智能体通过局部的控制策略和与其他智能体的信息共享,确保在全局目标下的协同作业。这种方法适用于需要高度协调的应用场景,如无人机编队、机器人群体运动等。通过DMPC,可以实现智能体之间的精确定位和高效转换,提升系统的整体性能和可靠性。
部分代码展示:
function [u] = agentQPCollision(ui,Pd,X,P,kci,D,K,lambda,Q,delta,S,R,A0,epsilon,r_min,sum_i,iagent)
% Soft constraints
Ustar = getUstar(ui,K);
C = zeros(3,3*K);
H1 = zeros(3*K,3*K);
f1 = zeros(1,3*K);
Pd1 = [];
% for i = 1:K
% Pd1 = [Pd1;Pd];
% end
% Pd = Pd1;
%---Quadratic Programming
for i= 1:sum_i
if D(iagent , i) == 1
kci_i = kci(iagent , i);
C(1,3*kci_i-2) = 1; C(2,3*kci_i-1) = 1; C(3,3*kci_i) = 1;
Perror = P(kci_i:kci_i+2,iagent)-P(kci_i:kci_i+2,i);
%k1 = 1000000001000/(norm(Perror-r_min)+1);
k1 = 10000001000/(norm(Perror-r_min)+1);
H1 = H1 + k1*(lambda'*lambda);
f1 = f1 + k1*(X'*A0'*C'*C*lambda-P(kci_i:kci_i+2,i)'*C*lambda);
end
end
H = (lambda'*Q*lambda)+(delta'*S*delta)+R+H1;
f = - (Pd'*Q*lambda-(A0*X)'*Q*lambda)-(Ustar'*S*delta)+f1;
[Aieq,bieq] = getAbieaCollision(K);
u = quadprog(H,f,Aieq,bieq );
% + k2*0.5*C*lambda
效果展示
172号资源-源程序:文档+程序多智能体点对点转换的分布式模型预测控制-本人博客有解读资源-CSDN文库https://download.csdn.net/download/LIANG674027206/89700633👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆
《《《《《《《《更多资源还请持续关注本专栏》》》》》》》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html