本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
本文提出了一种面向多类型极端天气的新型电力系统规划方案全场景风险评估方法。该方法的核心内容包括:
-
风险场景识别:基于历史信息筛选出可能对区域电网造成风险的潜在极端天气,分析气象因素与电网状态的映射关系,并提出基于极端气象条件的电网风险场景识别方法。
-
多重不确定性模型:针对极端天气及其影响下的源荷功率和设备故障等要素,建立风险场景多重不确定性模型,生成风险场景及其概率。
-
风险后果指标体系:从充裕性、灵活性及安全稳定性多维度全方位提出一套面向规划方案的针对性风险后果指标体系。
-
实用化电网后果计算方法:基于国家电网规划仿真分析计算平台,提出实用化电网后果计算方法,以解决实际电网风险评估中运行状态难以准确高效模拟的问题。
-
案例评估:以2025年东北规划电网为例,评估并分析其在高温无风和暴风雪天气下的高风险地区及风险类别。
该方法能够全面量化极端天气下系统源网荷不确定性,为实际电网风险规避策略的合理制定提供参考。通过评估,可以识别出电网在不同极端天气条件下的风险水平,为电网规划和运行提供科学依据。
仿真程序复现思路:
# 导入必要的库
import numpy as np
import pandas as pd
from scipy.stats import norm
# 假设数据加载函数
def load_data():
# 这里假设我们已经加载了必要的数据
# 例如:历史气象数据和电网状态数据
weather_data = pd.read_csv('historical_weather.csv')
grid_status_data = pd.read_csv('grid_status.csv')
return weather_data, grid_status_data
# 风险场景识别函数
def identify_risk_scenarios(weather_data, grid_status_data):
# 根据气象因素和电网状态识别风险场景
# 这里需要实现具体的识别逻辑
risk_scenarios = [] # 风险场景集合
# 识别逻辑(示例)
for index, row in weather_data.iterrows():
if row['temperature'] < -4.5 or row['temperature'] > 36:
risk_scenarios.append(row)
return risk_scenarios
# 构建多重不确定性模型
def build_uncertainty_models():
# 构建气象因素、源荷功率和设备故障的概率模型
# 这里需要实现具体的模型构建逻辑
models = {} # 不确定性模型集合
# 模型构建逻辑(示例)
models['weather'] = norm(loc=0, scale=1) # 假设气象因素服从正态分布
return models
# 生成风险场景及其概率
def generate_risk_scenarios_probabilities(uncertainty_models, risk_scenarios):
# 利用不确定性模型生成风险场景及其发生概率
scenarios_probabilities = []
for scenario in risk_scenarios:
probability = uncertainty_models['weather'].cdf(scenario['temperature'])
scenarios_probabilities.append((scenario, probability))
return scenarios_probabilities
# 系统运行风险评估
def assess_system_risk(risk_scenarios_probabilities, grid_status_data):
# 评估系统运行风险
risk_assessment_results = []
for scenario, probability in risk_scenarios_probabilities:
# 根据电网状态数据和风险场景进行风险评估
# 这里需要实现具体的风险评估逻辑
risk_level = 'High' if probability > 0.9 else 'Low'
risk_assessment_results.append((scenario, risk_level))
return risk_assessment_results
# 主函数
def main():
# 加载数据
weather_data, grid_status_data = load_data()
# 识别风险场景
risk_scenarios = identify_risk_scenarios(weather_data, grid_status_data)
# 构建不确定性模型
uncertainty_models = build_uncertainty_models()
# 生成风险场景及其概率
risk_scenarios_probabilities = generate_risk_scenarios_probabilities(uncertainty_models, risk_scenarios)
# 评估系统运行风
这段代码提供了一个基本的框架,用于实现文章中描述的风险评估方法。请注意,实际实现中需要根据具体的数据和评估逻辑来填充每个函数的内部逻辑。代码中的注释详细解释了每个步骤的目的和预期行为。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html