本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
本文提出了一种用户综合满意度驱动的多智能体图强化学习电动汽车充电引导策略,旨在解决电动汽车用户因行驶路线拥挤、排队时间长和电量不足产生的里程焦虑等问题。以下是文章的核心内容概述:
-
研究背景与目标:
- 随着新能源汽车的发展,电动汽车用户面临充电难、费用高和里程焦虑等问题。
- 提出一种基于用户综合满意度的多智能体图强化学习策略,以降低用户充电总时间成本、经济花费和总里程焦虑值,提升用户满意度。
-
用户综合满意度模型:
- 构建模型,考虑电动汽车用户的充电总时间成本、经济成本和里程焦虑。
- 使用二阶锥优化算法求解配电网最优潮流优化节点边际电价。
-
多智能体图强化学习模型:
- 提出基于图神经网络算法的多智能体图强化学习优化模型。
- 模型设计中采用独立模块处理用户隐私信息保护。
-
算法仿真与验证:
- 在电力-交通耦合系统中对算法进行仿真验证,与基于随机最小化后悔理论、多属性决策和最短路径法的充电策略相比,所提出的模型能更有效地考虑用户偏好,减少时间和经济成本,降低里程焦虑,提升充电站服务率,并保持电网稳定性。
-
关键贡献:
- 提出的策略能综合考虑车-站-路-网的耦合性,优化充电引导策略。
- 模型具有良好的扩展性和隐私保护措施。
-
研究结果:
- MAGRL算法在提升用户满意度、减少时间和经济成本、降低里程焦虑方面表现优异。
- 算法能够根据用户偏好定制充电路径,提升用户满意度。
- 算法展现出良好的适应性和扩展性,能够在不同的充电请求比例和道路容量变化下保持优化效果。
-
未来研究方向:
- 更全面地对用户特性建模,进一步研究EV用户特性对充电引导策略优化的影响。
本文的研究为电动汽车充电引导策略提供了一种新的方法,通过多智能体图强化学习技术,实现了用户满意度的提升和充电资源的优化配置。
以下是仿真复现思路的描述以及对应的程序代码表示。为了简化,这里使用Python语言,并假设使用PyTorch库来构建和训练多智能体图强化学习模型。'
# 导入必要的库
import torch
import torch.nn as nn
import torch.optim as optim
from torch_geometric.nn import GCNConv, GATConv
from torch_geometric.data import Data
import numpy as np
# 定义仿真参数
num_nodes = 25 # 交通网络节点数量
num_features = 4 # 每个节点的特征数量
num_classes = 4 # 充电站数量
hidden_dim = 16 # 隐藏层维度
learning_rate = 0.001 # 学习率
discount_factor = 0.95 # 折扣因子
episodes = 500 # 仿真轮数
experience_replay_size = 50000 # 经验回放池大小
batch_size = 8 # 每次训练的样本数量
# 定义图卷积网络结构
class MAGRL(nn.Module):
def __init__(self):
super(MAGRL, self).__init__()
self.conv1 = GATConv(num_features, hidden_dim) # GAT层
self.conv2 = GCNConv(hidden_dim, num_classes) # GCN层
def forward(self, x, edge_index):
x = torch.relu(self.conv1(x, edge_index))
x = self.conv2(x, edge_index)
return x
# 初始化模型、优化器和经验回放池
model = MAGRL()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
experience_replay = []
# 仿真主循环
for episode in range(episodes):
# 1. 初始化环境状态
node_features = np.random.randn(num_nodes, num_features) # 节点特征
edge_index = ... # 根据交通网络构建边索引
state = node_features
# 2. 环境交互循环
for t in range(total_time_steps):
# 2.1 根据当前状态选择动作
state_tensor = torch.tensor(state, dtype=torch.float)
edge_index_tensor = torch.tensor(edge_index, dtype=torch.long)
output = model(state_tensor, edge_index_tensor)
action = ... # 根据输出选择动作,例如使用softmax或argmax
# 2.2 执行动作,获取下一个状态和奖励
next_state, reward, done = ... # 根据动作更新状态和计算奖励
next_state_tensor = torch.tensor(next_state, dtype=torch.float)
# 2.3 存储经验
experience_replay.append((state_tensor, action, reward, next_state_tensor, done))
# 2.4 更新当前状态
state = next_state
# 2.5 经验回放
if len(experience_replay) > experience_replay_size:
sample = np.random.choice(len(experience_replay), batch_size)
states, actions, rewards, next_states, dones = zip(*[experience_replay[i] for i in sample])
states, actions, rewards, next_states, dones = torch.tensor(states), torch.tensor(actions), \
torch.tensor(rewards), torch.tensor(next_states), \
torch.tensor(dones)
# 2.6 计算损失并优化
optimizer.zero_grad()
predicted_rewards = model(states, edge_index_tensor)
loss = ... # 计算损失函数,例如MSE或CrossEntropy
loss.backward()
optimizer.step()
# 2.7 更新目标网络参数
# ...(根据具体算法,例如DQN,更新目标网络参数)
if done:
break
# 保存模型参数
torch.save(model.state_dict, 'magrl_model.pth')
注释:
- 此代码仅为仿真复现思路的简化表示,实际实现需要根据具体的网络结构、环境交互逻辑和奖励计算方法进行详细设计。
...
表示需要根据实际情况填充的代码或数据。- 程序中使用了图注意力网络(GAT)和图卷积网络(GCN)来处理节点特征和边信息。
- 经验回放池用于存储智能体与环境交互的经验,以便进行训练。
- 损失函数和优化器的选择取决于具体的任务和网络输出。
- 代码中省略了环境模拟和状态更新的具体细节,这些需要根据实际的电动汽车充电网络和交通模型来实现。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html