代码随想录算法训练营第三十七天丨738. 单调递增的数字、968. 监控二叉树

文章讨论了解决单调递增数字转换问题的两种方法,以及使用动态规划策略求解二叉树监控问题中的最小摄像头覆盖。作者指出贪心算法在某些问题中的应用,并强调了分治和优化思想的重要性。
摘要由CSDN通过智能技术生成

 738. 单调递增的数字

AC了,很快!但是又忘记可以从后向前遍历了!!!

class Solution:
    def monotoneIncreasingDigits(self, n: int) -> int:
        if n <= 9: return n
        n_list = [ord(x) - ord('0') for x in str(n)]
        n_len = len(n_list)
        max_index = 0
        for i in range(1, n_len):
            if n_list[i] > n_list[i - 1]:
                max_index = i
            elif n_list[i] < n_list[i - 1]:
                for j in range(max_index + 1, n_len):
                    n_list[j] = 9
                n_list[max_index] -= 1
        return int(''.join(map(str, n_list)))

其实仔细想一下,也差不多...各有各的最坏情况。

class Solution:
    def monotoneIncreasingDigits(self, N: int) -> int:
        strNum = str(N)
        flag = len(strNum)
        
        for i in range(len(strNum) - 1, 0, -1):
            if strNum[i - 1] > strNum[i]:
                flag = i
                strNum = strNum[:i - 1] + str(int(strNum[i - 1]) - 1) + strNum[i:]

        for i in range(flag, len(strNum)):
            strNum = strNum[:i] + '9' + strNum[i + 1:]

        return int(strNum)

968. 监控二叉树

动态规划:

class Solution:
    def minCameraCover(self, root: Optional[TreeNode]) -> int:
        def dfs(node):
            if not node:
                return (0, 0, float('inf'))  # (不需要摄像头覆盖, 已覆盖但无摄像头, 有摄像头)
            
            left = dfs(node.left)
            right = dfs(node.right)

            dp0 = left[1] + right[1]
            dp1 = min(left[2] + min(right[1], right[2]), right[2] + min(left[1], left[2]))
            dp2 = 1 + min(left) + min(right)

            return dp0, dp1, dp2

        return min(dfs(root)[1:])
  1. 节点未被直接监控(dp0):该状态表示当前节点没有安装摄像头,并且它不需要被直接监控。这种情况适用于其子节点都已经被覆盖,但没有直接在当前节点安装摄像头的情况。对于这个状态,我们考虑的是子节点已被覆盖但无摄像头的情况的和。

  2. 节点已被覆盖但无摄像头(dp1):该状态表示当前节点已经被覆盖,但是没有在当前节点上安装摄像头。对于这个状态,我们考虑的是在至少一个子节点上安装摄像头(使得当前节点被覆盖)的最小摄像头数量,以及不在子节点上安装摄像头但子节点已被覆盖的情况。

  3. 节点上安装了摄像头(dp2):这种情况适用于直接在当前节点上安装摄像头,因此,无论子节点是如何覆盖的,当前节点及其直接子节点都会被监控到。计算这个状态的值时,我们考虑在当前节点上安装一个摄像头,加上子节点处于任意状态(已覆盖但无摄像头、未被直接监控、或是有摄像头)的最小和。

贪心总结:

其实感觉贪心算法算是比较特殊的优化问题,通过利用问题的性质(例如有序、单调等)进行贪心选择,一次选择之后只剩下一个子问题,也就不需要动态规划去找之前所有的子问题的解了。

有时候需要两次贪心,就要把一个复杂的问题分成多个优化问题,再对每一个问题进行贪心选择。

一刷感觉本章还算比较容易理解吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值