Redis缓存穿透和雪崩
Redis缓存的使用,极大的提高了应用程序的性能和效率,特别是数据查询等。但同时,它也带来了一些问题。其中,最主要的问题就是数据一致性,从严格意义上来讲,这个问题是无解的。如果对数据一致性要求很高,那么就不能使用缓存。
另外一个典型的问题就是:内存穿透,内存击穿和内存雪崩问题。目前,业界也都有比较流行的解决方案。
缓存穿透 - 查不到
概念
缓存穿透的就是用户想要查询一个数据,发现Redis中没有,也就是缓存没有命中,于是向持久层数据库发起查询,发现也没有这个数据,于是本次查询失败。当用户很多的情况下,缓存都没有命中,又都去请求持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于缓存穿透。
解决方案1 – 布隆过滤器
布隆过滤器是一种数据结构,对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合的则丢弃,从而避免对持久层数据库的查询压力。
解决方案2–缓存空对象
当存储层不命中后,及时返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源。
但是这种方法会存在两个问题:
- 如果控制能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键
- 即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。
缓存击穿 - 量太大,缓存过期
概念
这里需要注意和缓存穿透的区别,缓存击穿,是指一个key非常热点。在不停的扛着大量并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在也给屏蔽上凿开了一个洞。
当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新数据,并且写会缓存,会导致数据库瞬间压力过大。
解决方法1 – 热点数据永不过期
从缓存层面来看,没有设置过期时间,所以不会出现热点key过期后产生的问题。
解决方案2 – 加互斥锁
分布式锁: 使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验比较大
缓存雪崩
概念
缓存雪崩指的是在某一时间段,缓存集中过期失效,或者Redis宕机。比如:在写文本的时候,马上要到双十一零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就过期了。从而对这批商品的访问查询,都落到了后台数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会宕机的情况。
其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然形成的缓存雪崩,一定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务器节点的宕机,对数据服务器造成的压力是不可预估的,很可能瞬间就把数据库压宕机。
解决方案1 – Redis高可用
这个思想就是说既然Redis有可能挂掉,我就多增设几台Redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建缓存服务器集群。(异地多活)
解决方案2 – 限流降级
这个思想就是在缓存失效后,通过加锁或者队列来控制读写数据库的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
解决方案3 – 数据预热
数据预热的含义就是在正式部署之前,先把可能的数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。