Salem and Sticks
Salem gave you n sticks with integer positive lengths a1,a2,…,an.
For every stick, you can change its length to any other positive integer length (that is, either shrink or stretch it). The cost of changing the stick’s length from a to b is |a−b|, where |x| means the absolute value of x.
A stick length aiai is called almost good for some integer t if |ai−t|≤1.
Salem asks you to change the lengths of some sticks (possibly all or none), such that all sticks’ lengths are almost good for some positive integer tt and the total cost of changing is minimum possible. The value of tt is not fixed in advance and you can choose it as any positive integer.
As an answer, print the value of tt and the minimum cost. If there are multiple optimal choices for t, print any of them.
Input
The first line contains a single integer n (1≤n≤1000) — the number of sticks.
The second line contains n integers ai (1≤ai≤100) — the lengths of the sticks.
Output
Print the value of tt and the minimum possible cost. If there are multiple optimal choices for tt, print any of them.
Examples
Input
3
10 1 4
Output
3 7
Input
5
1 1 2 2 3
Output
2 0
Note
In the first example, we can change 1 into 2 and 10 into 4 with cost |1−2|+|10−4|=1+6=7and the resulting lengths [2,4,4] are almost good for t=3.
In the second example, the sticks lengths are already almost good fort=2, so we don’t have to do anything
//关键是找t,把所有数变成【t-1,t+1】范围内若数与t距离>1再加,且数据较小找T直接暴力排序找```
数据较小暴力排序
Int 范围10^8
Long long 10^16//
#include<stdio.h>
#include<math.h>
#include <stdlib.h>
int cmp(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
int main()
{
int n, a[1005], i,s=0,j,m= 99999999,t;
scanf("%d", &n);
for (i = 0; i < n; i++)
{
scanf("%d",& a[i]) ;
}
qsort(a, n, sizeof(a[0]), cmp);
for (i = a[0]; i <= a[n - 1]; i++)
{
s = 0;
for (j = 0; j < n; j++)
{
if (a[j] < i - 1) s += i - 1 - a[j];
if (a[j] > i + 1) s += a[j] - (i + 1);
}
if (s < m)
{
m = s;
t = i;
}
}
printf("%d %d", t, m);
return 0;
}