Havel-Hakimi定理(Degree Sequence of Graph G)

Havel-Hakimi定理用于判断一个度数序列是否能构成简单图。通过递归地调整序列,最终得到全为0的序列表示可图。例如,序列6, 5, 4, 3, 3, 3, 2, 0经过操作后变为0, 0, 0, 0,说明可以形成图。在HDU 2454例题中,一个序列得到'yes'答案,另一个得到'no',表明不是所有度数序列都能构造出图。" 97622661,8094044,理解箱线图:数据可视化关键工具,"['数据可视化', '箱线图']
摘要由CSDN通过智能技术生成

Havel-Hakimi定理*
实例演示:
判断序列S:=6,5,4,3,3,3,2,0 是否可图。
证:a. 删除首元素6,将除去第一个元素后面的6(后面最大值个)个元素减一,得到:S1 = 4,3,2,2,2,1,0
b.删除首元素4,将除去第一个元素后面的4个元素减一,得到:S2 = 2,1,1,1,1,0
c,删除首元素2,将除去第一个元素后面的2个元素减一,得到:S3 = 0,0,1,1,0
d.重新排序:S4 = 1,1,0,0,0
e.删除首元素1,将除去第一个元素后面的1个元素减一,得到:S3 = 0,0,0,0
若最后得到一个非负序列即为可成图
模版

int havel(int a[])
{
    for(int i=0;i<n;i++)
    {
        sort(a,a+n,cmp);
        if(a[0]==0) break;
        for(int j=1;j<=a[0]&&j<n;j++)
        {
            a[j]--;
            if(a[j]<0)
            {
                return 1;
                break;
            }
        }
        a[0]=0;
    }
    return 0;//可谓图
}
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值