题目描述
给你一个整数数组
nums
,有一个大小为k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的k
个数字。滑动窗口每次只向右移动一位。返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3 输出:[3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7示例 2:输入:nums = [1], k = 1 输出:[1]
提示:
1 <= nums.length <=
-
<= nums[i] <=
1 <= k <= nums.length
解题思路
要解决这个问题,我们可以使用**双端队列(Deque)**来高效地找到滑动窗口内的最大值。双端队列允许我们在 O(1) 的时间复杂度下在队列的两端进行插入和删除操作。
具体步骤如下:
-
双端队列的定义与维护:
我们使用一个双端队列deque
来存储数组nums
中元素的索引。这个队列中的索引按元素大小降序排列,意味着队列的头部总是当前窗口的最大值;每次移动窗口时,我们会维护这个队列,确保队列中的元素始终属于当前窗口,并且在队列头部保存的是当前窗口的最大值。 -
窗口的移动与更新:
随着窗口向右移动,我们会依次从数组中添加新的元素到窗口中,并将其索引添加到deque
中;如果deque
中的第一个元素已经不在当前窗口范围内,我们将其从deque
中移除;在将新元素加入deque
时,如果deque
尾部的元素小于新元素,则将尾部的元素移除,因为这些元素不会再成为最大值。 -
记录结果:
当窗口移动超过大小k
后,每次我们都会将deque
中的第一个元素(当前窗口的最大值)记录到结果列表中。
复杂度分析
-
时间复杂度:O(n)。其中
n
是数组nums
的长度。每个元素最多被插入和删除一次,因此总的时间复杂度是 O(n)。 -
空间复杂度:O(k)。双端队列中最多会保存
k
个元素的索引,因此空间复杂度是 O(k)。
代码实现
package org.zyf.javabasic.letcode.hot100.substring;
import java.util.Deque;
import java.util.LinkedList;
/**
* @program: zyfboot-javabasic
* @description: 滑动窗口最大值
* @author: zhangyanfeng
* @create: 2024-08-21 21:43
**/
public class MaxSlidingWindowSolution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums == null || nums.length == 0 || k <= 0) {
return new int[0];
}
// 结果数组
int[] result = new int[nums.length - k + 1];
// 使用双端队列存储索引
Deque<Integer> deque = new LinkedList<>();
for (int i = 0; i < nums.length; i++) {
// 移除队列中不在当前窗口范围内的元素
if (!deque.isEmpty() && deque.peekFirst() < i - k + 1) {
deque.pollFirst();
}
// 移除队列中所有小于当前元素的索引
// 因为这些元素不会再成为最大值
while (!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {
deque.pollLast();
}
// 将当前元素的索引添加到队列中
deque.offerLast(i);
// 当窗口大小达到k时,将当前窗口的最大值添加到结果数组中
if (i >= k - 1) {
result[i - k + 1] = nums[deque.peekFirst()];
}
}
return result;
}
public static void main(String[] args) {
MaxSlidingWindowSolution solution = new MaxSlidingWindowSolution();
// 测试用例 1
int[] nums1 = {1, 3, -1, -3, 5, 3, 6, 7};
int k1 = 3;
int[] result1 = solution.maxSlidingWindow(nums1, k1);
for (int num : result1) {
System.out.print(num + " ");
}
// 输出: [3, 3, 5, 5, 6, 7]
System.out.println();
// 测试用例 2
int[] nums2 = {1};
int k2 = 1;
int[] result2 = solution.maxSlidingWindow(nums2, k2);
for (int num : result2) {
System.out.print(num + " ");
}
// 输出: [1]
}
}
具体可参考:https://zyfcodes.blog.csdn.net/article/details/141401712