import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import java.util.Arrays;
import java.util.List;
public class Test02 {
public static void main(String[] args) {
map();
}
/**
* transformation操作实战
* @param args
*/
/**
* map算子案例,将集合中每一个元素都乘以2
*/
public static void map(){
//创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
//创建javaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构建集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//使用ma
java 版spark 中的map算子的使用
最新推荐文章于 2022-07-25 22:51:56 发布
本文详细介绍了在Java Spark Core中如何使用map算子进行数据转换操作,通过实例展示了map在WordCount问题中的应用,帮助读者理解并掌握Spark的map算子在实际编程中的运用。
摘要由CSDN通过智能技术生成