线性结构
向量-vector
长度不定的数组
构造
#include <iostream>
#include <stdio.h>
#include <string>//c
#include<cstring>//memset
#include<vector>
using namespace std;
void print(vector<int> myVector,int n){
printf("vecor%d; ",n);
for(int i=0;i<myVector.size();i++){
printf("%d",myVector[i]);
}
printf("\n");
}
int main() {
int myArray[] = {1, 2, 3, 4, 5};
vector<int> myVector1;
vector<int> myVector2(myArray,myArray+5);//1,2,3,4,5
vector<int> myVector3(5,2);//2,2,2,2,2
vector<int> myVector4(myVector2);//1,2,3,4,5
vector<int> myVector5(myVector4.begin(),myVector4.begin()+3);//1,2,3
print(myVector1,1);
print(myVector2,2);
print(myVector3,3);
print(myVector4,4);
print(myVector5,5);
}
基本操作
#include <iostream>
#include <stdio.h>
#include <string>//c
#include<cstring>//memset
#include<vector>
using namespace std;
int main() {
int myArray[] = {1, 2, 3, 4, 5};
vector<int> myVector(myArray, myArray + 5); //1,2,3,4,5
int n = myVector.size();
myVector.pop_back();//1,2,3,4
myVector.push_back(6);//1,2,3,4,6
myVector.insert(myVector.begin() + 1, 9); //1,9,2,3,4,6
myVector.insert(myVector.begin(), 3, 7); //7,7,7,1,9,2,3,4,6
myVector.insert(myVector.begin(), myArray, myArray + 2); //1,2 ,7,7,7,1,9,2,3,4,6
myVector.erase(myVector.begin() + 6);//1,2 ,7,7,7,1,2,3,4,6
myVector.erase(myVector.begin() + 1, myVector.begin() + 3); //1,7,7,1,2,3,4,6
myVector.clear();
}
队列
基本操作
#include <iostream>
#include <stdio.h>
#include <string>//c
#include<cstring>//memset
#include<queue>
using namespace std;
int main() {
queue<int> myQueue;
for (int i = 0; i < 10; i++) {
myQueue.push(i);//入队
}
int sum = 0;
while (!myQueue.empty()) { //判空
sum += myQueue.front(); //访问队首
myQueue.pop();//出队
}
printf("%d\n", sum) ;
return 0;
}
例题:猫狗收容所
- 题目描述
- 有家动物收容所只收留猫和狗,但有特殊的收养规则,收养人有两种收养方式,
- 第一种为直接收养所有动物中最早进入收容所的,
- 第二种为选择收养的动物类型(猫或狗),并收养该种动物中最早进入收容所的。
- 给定一个操作序列int[][2] ope(C++中为vector<vector>)代表所有事件。
- 若第一个元素为1,则代表有动物进入收容所,第二个元素为动物的编号,正数代表狗,负数代表猫;
- 若第一个元素为2,则代表有人收养动物,
- 第二个元素若为0,则采取第一种收养方式,若为1,则指定收养狗,若为-1则指定收养猫。
- 请按顺序返回收养的序列。若出现不合法的操作,即没有可以符合领养要求的动物,则将这次领养操作忽略。
#include <iostream>
#include <stdio.h>
#include <string>//c
#include<cstring>//memset
#include<queue>
using namespace std;
struct Animal {
int number;
int order;//对各个动物 进来的顺序进行编号
Animal() {
}
Animal(int n, int o): number(n), order(o) {
}
};
queue<Animal> cats;
queue <Animal> dogs;
int main() {
int n;
scanf("%d", &n);
int order = 0;
for (int i = 0; i < n; i++) {
int method, type;
scanf("%d%d", &method, &type);
//动物进入收容所,method==1
if (method == 1) {
if (type > 0) {
dogs.push(Animal(type, order++));
} else {
cats.push((Animal(type, order)));
}
}
//有人收养动物 ,method==2
else {
//第二个元素若为0,直接收养所有动物中最早进入收容所的
if (type == 0 && !dogs.empty() && !cats.empty()) {
if (dogs.front().order < cats.front().order) {
printf("%d", dogs.front().number);
dogs.pop();//记得弹出队头元素
} else {
printf("%d", cats.front().number);
cats.pop();
}
} else if (type == 0 && !dogs.empty() && cats.empty()) {
printf("%d", dogs.front().number);
dogs.pop();
} else if (type == 0 && dogs.empty() && !cats.empty()) {
printf("%d", cats.front().number);
cats.pop();
}
//若为1,则指定收养狗
else if (type == 1 && !dogs.empty()) {
printf("%d", dogs.front().number);
dogs.pop();
}//若为-1则指定收养猫。
else if (type == -1 && !cats.empty()) {
printf("%d", cats.front().number);
cats.pop();
}
}
}
printf("\n");
return 0;
}
栈
基本操作
#include <iostream>
#include <stdio.h>
#include <string>//c
#include<cstring>//memset
#include<stack>
using namespace std;
int main() {
stack<int> myStack;
for (int i = 0; i < 10; i++) {
myStack.push(i);//入栈
}
int sum = 0;
while (!myStack.empty()) { //判空
printf("%d ", myStack.top()) ;
sum += myStack.top(); //访问栈顶
myStack.pop();//出栈
}
printf("\n%d\n", sum) ;
return 0;
return 0;
}
逆序输出
括号匹配
#include <iostream>
#include <stdio.h>
#include <string>//c
#include<cstring>//memset
#include<stack>
using namespace std;
int main() {
string str;
while (cin >> str) {
//用栈来记录 左括号的下标,而不是字符
stack<int> brackets;
string answer(str.size(), ' '); //定义一个空字符串记录哪一位适配
for (int i = 0; i < str.size(); i++) {
if (str[i] == '(') {
brackets.push(i);
} else if (str[i] == ')') {
if (!brackets.empty()) {
brackets.pop();//匹配成功弹出
} else {
answer[i] = '?'; //右括号 没有适配
}
}
}
while (!brackets.empty()) {
answer[brackets.top()] = '$';
brackets.pop();
}
//)(rttyy())$$)(
cout << str << endl;
cout << answer << endl;//? ?$
}
return 0;
}
表达式求值
- 用栈实现中缀表达式转后缀表达式:
- 初始化一个栈,用于保存暂时还不能确定运算顺序的运算符。
- 从左到右处理各个元素,直到末尾。可能遇到三种情况:
- ① 遇到操作数。直接加入后缀表达式。
- ② 遇到界限符。遇到“(”直接入栈;遇到“)”则依次弹出栈内运算符并加入后缀表达式,直到弹出“(”为止。注意:“(”不加入后缀表达式。
- ③ 遇到运算符。依次弹出栈中优先级高于或等于当前运算符的所有运算符,并加入后缀表达式,若碰到“(” 或栈空则停止。之后再把当前运算符入栈。
- 按上述方法处理完所有字符后,将栈中剩余运算符依次弹出,并加入后缀表达式。
- 用栈实现后缀表达式的计算:
- ①从左往右扫描下一个元素,直到处理完所有元素
- ②若扫描到操作数则压入栈,并回到①;否则执行③
- ③若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到①
- 用栈实现中缀表达式的计算:
- 初始化两个栈,操作数栈和运算符栈
- 若扫描到操作数,压入操作数栈
- 若扫描到运算符或界限符,则按照“中缀转后缀”相同的逻辑压入运算符栈(期间也会弹出运算符,
每当弹出一个运算符时,就需要再弹出两个操作数栈的栈顶元素并执行相应运算,运算结果再压回操作数栈)