线性筛各类(筛每个数i的约数个数),杜教筛莫比乌斯前n项和以及欧拉函数前n项和 模板

参考博客:https://www.cnblogs.com/peng-ym/p/9446555.html
https://blog.csdn.net/skywalkert/article/details/50500009

1,线性筛素数,欧拉函数,莫比乌斯函数,筛每个数 i 的约数个数

参考博客:https://blog.csdn.net/tc_to_top/article/details/48025849


#include<bits/stdc++.h>

using namespace std;

const int maxn=1000005;
int prime[maxn],tot;/// 筛素数 ,从0下标开始存储

int mu[maxn];///莫比乌斯函数

int phi[maxn]; ///欧拉函数

///facnum[i]表示i的约数个数,mi[i],表示i的最小质因子的次幂
int facnum[maxn],d[maxn];

bool vis[maxn];

void init()
{
    tot = 0;
    phi[1] = 1;
    mu[1] = 1;
    facnum[1] = 1;
    int n=1000010;
    for(int i = 2; i < n; i++)
    {
        if(!vis[i])
        {
            phi[i] = i - 1;
            mu[i] = -1;
            prime[tot++] = i;
            facnum[i] = 2;
            d[i] = 1;
        }
        for(int j = 0; j < tot && i * prime[j] < n; j++)
        {
            vis[i * prime[j]] = true;
            if(i % prime[j] == 0)
            {
                phi[i * prime[j]] = phi[i] * prime[j];
                mu[i * prime[j]] = 0;
                facnum[i * prime[j]] = facnum[i] / (d[i] + 1) * (d[i] + 2);
                d[i * prime[j]] = d[i] + 1;
                break;
            }
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            mu[i * prime[j]] = -mu[i];
            facnum[i * prime[j]] = facnum[i] * 2;
            d[i * prime[j]] = 1;
        }
    }
}

int main()
{
    init();
    return 0;
}

2,杜教筛莫比乌斯前n项和以及前n项欧拉函数和。

莫比乌斯前n项和:
我们设:
F ( n ) = ∑ i = 1 μ ( i ) F(n)=\sum_{i=1}\mu(i) F(n)=i=1μ(i)
我们知道有莫比乌斯函数这样一个性质:
∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu (d)=[n=1] dnμ(d)=[n=1]

1 = ∑ i = 1 n ∑ d ∣ i μ ( d ) = [ n = 1 ] 1=\sum_{i=1}^{n}\sum_{d|i}\mu(d)=[n=1] 1=i=1ndiμ(d)=[n=1]
1 = ∑ i = 1 n ∑ d = 1 ⌊ n i ⌋ μ ( d ) = [ n = 1 ] 1=\sum_{i=1}^{n}\sum_{d=1}^{\left \lfloor \frac{n}{i} \right \rfloor}\mu(d)=[n=1] 1=i=1nd=1inμ(d)=[n=1]
1 = ∑ i = 1 n F ( ⌊ n i ⌋ ) 1=\sum_{i=1}^{n}F(\left \lfloor \frac{n}{i} \right \rfloor) 1=i=1nF(in)
1 = F ( n ) + ∑ i = 2 n F ( ⌊ n i ⌋ ) 1=F(n)+\sum_{i=2}^{n}F(\left \lfloor \frac{n}{i} \right \rfloor) 1=F(n)+i=2nF(in)
F ( n ) = 1 − ∑ i = 2 n F ( ⌊ n i ⌋ ) F(n)=1-\sum_{i=2}^{n}F(\left \lfloor \frac{n}{i} \right \rfloor) F(n)=1i=2nF(in)

欧拉函数前n项和
首先我们知道有这个公式 ∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi (d)=n dnφ(d)=n
ϕ ( n ) = ∑ i = 1 n φ ( i ) \phi(n)=\sum_{i=1}^{n}\varphi(i) ϕ(n)=i=1nφ(i)
接着就是一波推导,最后会化成这样

ϕ ( n ) = n ∗ ( n + 1 ) 2 − ∑ i = 2 n ϕ ( ⌊ n i ⌋ ) \phi(n)=\frac{n*(n+1)}{2}-\sum_{i=2}^{n}\phi(\left \lfloor \frac{n}{i} \right \rfloor) ϕ(n)=2n(n+1)i=2nϕ(in)

推导过程见:神犇
公式出来了,那么我们就可以用分块的思想去求解,这里参考杜教神犇的模板。

通过这两个公式,我们可以发现,每次我们设一个我们要的函数,然后想办法把式子化成只有这个函数的表达式。

#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define N 6000010
using namespace std;

typedef long long LL;

bool vis[N];
int mu[N],sum1[N],phi[N];
LL sum2[N];
int tot,prime[N];
tr1::unordered_map<LL,LL>w1;
tr1::unordered_map<int,int>w;
void get(int maxn)
{
    tot=0;
    phi[1]=mu[1]=1;
    for(int i=2;i<=maxn;i++)
    {
        if(!vis[i])
        {
            prime[++tot]=i;///素数
            mu[i]=-1;phi[i]=i-1; ///莫比乌斯函数,欧拉函数
        }
        for(int j=1;j<=tot&&prime[j]*i<=maxn;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else mu[i*prime[j]]=-mu[i],phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
    
    ///预处理前maxn项的前n项和
    for(int i=1;i<=maxn;i++)sum1[i]=sum1[i-1]+mu[i],sum2[i]=sum2[i-1]+phi[i];
}
int djsmu(int x) ///杜教筛 前x项莫比乌斯函数和
{
    if(x<=6000000)return sum1[x];
    if(w[x])return w[x];
    int ans=1;
    ///整数分块
    for(int l=2,r;l>=0&&l<=x;l=r+1)
    {
        r=x/(x/l);
        ans-=(r-l+1)*djsmu(x/l);
    }
    return w[x]=ans;
}
LL djsphi(LL x) ///杜教筛 前x项欧拉函数和
{
    if(x<=6000000)return sum2[x];
    if(w1[x])return w1[x];
    LL ans=x*(x+1)/2;
    for(LL l=2,r;l<=x;l=r+1)
    {
        r=x/(x/l);
        ans-=(r-l+1)*djsphi(x/l);
    }
    return w1[x]=ans;
}
int main()
{
    int t,n;
    scanf("%d",&t);
    get(6000000);
    while(t--)
    {
        scanf("%d",&n);
        printf("%lld %d\n",djsphi(n),djsmu(n));
    }
    return 0;
}

.

.

我的标签:做个有情怀的程序员!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值