题目链接:哆啦A梦传送门
题解:我们建图,源点到奇数点(权值为所在的点值),偶数点到汇点(权值为所在点的权值)。
奇数点到偶数点建边(权值为INF)。
题目要求取得点总值最大(满足相邻点只能任取一个),也就是源点不能走到汇点。那么就是要我们求最小割。
而我们根据最大流最小割定理:对于任意一个只有一个源和一个汇的图来说,从源到汇的最大流等于最小割。
这里不能把奇数点到偶数点的边给割掉,因为一旦割掉,就会使得相邻点都取走了。所以我们设它们的权值为INF。
参考链接:https://www.cnblogs.com/gdjdsjh/p/5214665.html
https://blog.csdn.net/jy02660221/article/details/83471968
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=500;
const int INF=0x3f3f3f3f;
int ma[N][N],a[30][30],dep[N];
queue<int> que;
int bfs(int s,int t)
{
while(!que.empty()) que.pop();
memset(dep,-1,sizeof(dep));
dep[s]=0;
que.push(s);
while(!que.empty()){
int u=que.front();
que.pop();
for(int v=1;v<=t;v++){
if(ma[u][v]&&dep[v]==-1){
dep[v]=dep[u]+1;
que.push(v);
}
}
}
return dep[t]!=-1;
}
int dfs(int u,int mi,int t){
if(u==t) return mi;
int tmp;
for(int v=1;v<=t;v++){
if(ma[u][v]&&dep[v]==dep[u]+1&&(tmp=dfs(v,min(mi,ma[u][v]),t))){
ma[u][v]-=tmp;
ma[v][u]+=tmp;
return tmp;
}
}
return 0;
}
int dinic(int s,int t)
{
int ans=0,tmp;
while(bfs(s,t)){
while(1){
tmp=dfs(s,INF,t);
if(!tmp) break;
ans+=tmp;
}
}
return ans;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(ma,0,sizeof(ma));
int sum=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a[i][j]),sum+=a[i][j];
int s=0,t=n*n+1;
int cur;
for(int i=1;i<=n;i++) ///建图
{
for(int j=1;j<=n;j++){
if((i+j)&1){
cur=(i-1)*n+j; ///每个点的序号
ma[s][cur]+=a[i][j];///源点到奇数点
if(i>1) ma[cur][cur-n]=INF; ///相邻上下左右四个点
if(i<n) ma[cur][cur+n]=INF;
if(j>1) ma[cur][cur-1]=INF;
if(j<n) ma[cur][cur+1]=INF;
}
else ma[(i-1)*n+j][t]=a[i][j]; ///偶数点到汇点
}
}
printf("%d\n",sum-dinic(s,t));
}
return 0;
}