【数学】什么是取模运算、取余运算

本文详细解释了取模运算和余运算的概念,通过实例说明它们的运算步骤和区别,重点强调了正负数情况下结果的不同。同时提到,当正负号一致时,取模和余运算结果相同;而异号时则不同,以34mod10为例进一步说明。
摘要由CSDN通过智能技术生成

【数学】什么是取模/余运算

2023.11.28

在做一道题时,题目要求对所给的数字进行取模,我就是一彩笔我肯定不知道什么是取模啊,然后我就去CSDN上搜了一下,发现了一篇挺不错的文章,把取模运算和取余运算讲的很透彻

话不多说上参考链接:【数学】什么是取模运算?-CSDN博客

感觉取模/余运算像是在套公式,跟欧几里得算法求最大公约数似的

取模运算与取余运算的共同点:

为了方便理解,以计算 -7 Mod 4为例

运算步骤和方法相同

  1. 求整数商c: c=[a/b];
  2. 计算模或者余数r: r=a-c*b;

此处的a=-7,b=4

取模运算与取余运算的区别

两者之间的区别在于第一步:

在进行求模运算时:c=[a/b]=-7/4=-2(向负无穷方向舍入)

​ r=a-c*b=1

在进行求余运算时:c=[a/b]=-7/4=-1(向0方向舍入)

​ r=a-c*b=-3

但当a和b正负号一致时,求模运算和求余运算所得的c的值相同,因此结果一致。当正负号不一致时,结果不一样。

如 7 Mod 4:

a=7,b=4

求模运算:c=[a/b]=7/4=1(向负无穷方向舍入)

​ r=a-c*b=3

求余运算:c=[a/b]=7/4=1(向0方向舍入)

​ r=a-c*b=3

归纳总结:当a和b正负号一致时,求模运算和求余运算所得的c的值相同,因此结果一致。当正负号不一致时,结果不一样。

对于取余运算:记住“a mod b”是 a除以b 的余数,例如 34 mod 10 等于 4

Over.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值