这个图大概可以描述mapreduce计算模型的执行过程,下面我们就围绕这个图聊几个问题,其中有工作中非常有用的问题:
1. mapper的个数
结论:mapper的个数是由输入数据的大小决定的,一般不需要我们去设置,如果你想控制mapper的个数,那么需要先了解hadoop是怎么控制mapper的个数。
如图所示,每个Mapper Tasker对应一个split(切片),要处理的file被FileInputFormat分成了几个切片就会有几个mapper;FileInputFormat怎么获取的切面呢,直接上源码:
public List<InputSplit> getSplits(JobContext job) {
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
long maxSize = getMaxSplitSize(job);
long splitSize = computeSplitSize(blockSize, minSize, maxSize);
long blockSize = file.getBlockSize();
long splitSize=computeSplitSize(blockSize,minSize, maxSize);
}
protected long getFormatMinSplitSize() {
return 1;
}
public static long getMinSplitSize(JobContext job) {
return job.getConfiguration().getLong(SPLIT_MINSIZE, 1L);
}
public static final String SPLIT_MINSIZE =
"mapreduce.input.fileinputformat.split.minsize";
public static long getMaxSplitSize(JobContext context) {
return context.getConfiguration().getLong(SPLIT_MAXSIZE, Long.MAX_VALUE);
}
public static final String SPLIT_MAXSIZE =
"mapreduce.input.fileinputformat.split.maxsize";
protected long computeSplitSize(long blockSize, long minSize,long maxSize) {
return Math.max(minSize, Math.min(maxSize, blockSize));
}
通过源码得出切片数splitSize由三个元素决定:
- blockSize block大小,hadoop1默认64M,hadoop2默认128M
- minSize 最小值,默认是 1,我可以通过FileInputFormat.setMinInputSplitSize(job, size)方法来修改最小值;
- maxSize 最大值,默认是MAX_VALUE = 0x7fffffffffffffffL,可以通过FileInputFormat.setMaxInputSplitSize(job, size)修改最大值
最后做计算:Math.max(minSize, Math.min(maxSize, blockSize))
默认情况下:Math.max(1, Math.min(0x7fffffffffffffffL, 128))显然结果为128,也就是说默认情况下有几个block就有几个切片,这也是为了提高mapreduce的运行效率。
2.reducer个数
结论:reducer个数是由partition个数决定。
mapper产生的中间数据经过shuffer过程,根据我们的业务把数据分成若干partition,每个partition的数据由对应的一个reducer来处理。mapreduce决定partition的是:Partitioner类中的intgetPartition(KEY key, VALUE value, int numPartitions)
方法,我们来看下默认的分区方法:
public class HashPartitioner<K, V> extends Partitioner<K, V> {
/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K key, V value,
int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
由代码看出默认的分区有两个元素决定:
- key的hash值
- numReduceTasks,需要我们通过
job.setNumReduceTasks(reduceNum)
方法来设置的reducer个数
最终得出partition个数就是我们设置的个数,比如我们设置job.setNumReduceTasks(3)
hashcode除以10的余数就是0、1、2三个值,默认之所以用key的hash值是为了把数据均匀的分布到reducer防止数据倾斜。
当然了我们可以根据我们自己的业务来继承Partition类重写getPartition方法来决定partition数。