位运算求整数平均值

整数的平均值 
对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y 可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下 算法 : 
int average(int x, int y)  //返回X,Y 的平均值 
{    
    return (x&y)+((x^y)>>1); 

思路:

很牛X的一个思路,虽然不算高效,但如果在汇编中的话,这种方法可以不产生高位溢出。
我琢磨了一下,大概思路应该是这样:

(x&y)+((x^y)>>1),把x和y里对应的每一位(指二进制位)都分成三类,每一类分别计算平均值,最后汇总。其中,一类是x,y对应位都是1,用x&y计算其平均值;一类是x,y中对应位有且只有一位是1,用(x^y)>>1计算其平均值;还有一另是x,y中对应位均为0,无须计算。

下面我再分别说明一下前两种情况是怎样计算的:

x,y对应位均为1,相加后再除以2还是原来的数,如两个00001111相加后除以2仍得00001111,这是第一部分。
第二部分,对应位有且只有一位为1,用“异或”运算提取出来,然后>>1(右移一位,相当于除以2),即到到第二部分的平均值。
第三部分,对应位均为零,因为相加后再除以二还是0,所以不用计算。
三部分汇总之后就是(x&y)+((x^y)>>1)

顺便解释一下前面说到可以避免溢出。
假设x,y均为unsigned char型数据(0~255,占用一字节),显然,x,y的平均数也在0~255之间,但如果直接x+y可能会使结果大于255,这就产生溢出,虽然最终结果在255之内,但过程中需要额外处理溢出的那一位,在汇编中就需要考虑这种高位溢出的情况,如果(x&y)+((x^y)>>1)计算则不会。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值