求两个给定正整数的最大公约数和最小公倍数(python版)

该博客介绍了如何使用Python实现辗转相除法求两个正整数的最大公约数和最小公倍数。通过示例展示了算法过程,如求1997和615的最大公约数为1,并给出了计算最小公倍数的公式。内容侧重于Python编程和算法应用。
摘要由CSDN通过智能技术生成

求两个给定正整数的最大公约数和最小公倍数(python版)

输入格式:

输入在两行中分别输入正整数x和y。

输出格式:

在一行中输出最大公约数和最小公倍数的值。

输入样例1:

在这里给出一组输入。例如:

100
1520

输出样例1:

在这里给出相应的输出。例如:

20 7600

解答

x=xx=int(input())
y=yy=int(input())
while True:
    d=x%y
    if d==0:
        break
    x,y=y,d
print(y, xx*yy//y)

原理:辗转相除法求最大公约数,两数之积等于最大公约数与最小公倍数之积

假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:

1997 / 615 = 3 (余 152)

615 / 152 = 4(余7)

152 / 7 = 21(余5)

7 / 5 = 1 (余2)

5 / 2 = 2 (余1)

2 / 1 = 2 (余0)

至此,最大公约数为1

以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数1。

同时,最小公倍数为1997*615/1=1228155

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值