基于图像识别的分类器的实现

本文介绍了基于图像识别的肝病图像分类器实现过程,涉及图像分割、特征提取和机器学习算法。通过CT图像的纹理特征分析,使用随机森林选择特征,并用SVM和BP神经网络进行分类,最终获得约90%的分类准确率,证明纹理特征在图像分类中的有效性。
摘要由CSDN通过智能技术生成

最近做了一些图像处理的工作,故想着有时间时候整理一下,随着人工智能的发展,智能化的图像识别也越来越受到重视。以肝病的图像分类器为例,通过对每一位肝病患者的CT图像的特征部位提取,解算其相关的纹理特征,再利用机器学习的相关算法在纹理特征的基础上生成分类器,从而对患者的得病程度进行划分。
在这篇,先分享关于对图像分割以及特征提取的一些感悟
1)图像分割往往是图像处理的第一步,提取ROI区域并且忽略不重要信息往往是机器学习中信息提取的重要一步,提取的方式可以考虑首先手动框选,可以考虑例如MFC中onmouse函数操作来提取感兴趣的区域。
2)而图像分割往往可以实际问题来考量,例如非常传统的阈值分割、二次阈值分割、分水岭算法、GRabcut算法等,当然形态学中的处理算法也是不错的可以选择的方法。
3)接下来是信息提取,在机器学习分类中,很多时候大家都把重点放在机器学习算法上,其实个人认为往往信息提取是图像分类中更重要的一步,选取合理的信息提取信息,在后期机器学习的实现中往往会起到更重要的作用。(机器学习的算法只是来处理数据,而数据如果区分度越明显,当然效果将会越明显),针对B超或者这种CT图像,纹理特征是非常好的选择,也就是行程矩阵或者灰度共生矩阵等等。
4)机器学习算法的分类实现,这里自己所用的是opencv中自带的机器学习算法库,主要是利用随机森林进行了一个特征重要度选取(实现的依据袋外数据误差),再利用opencv中SVM和BP神经网络进行分类对比操作(其实opencv中机器学习的包确实比较成熟了,而且调用方便简洁很好操作),后期考虑是否可以去损失函数的优化算法进行改进避

ImageComparerUI——基于Java语言实现的相似图像识别,基于直方图比较算法。 import java.awt.BorderLayout; import java.awt.Color; import java.awt.Dimension; import java.awt.FlowLayout; import java.awt.Font; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.MediaTracker; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; import javax.swing.JButton; import javax.swing.JComponent; import javax.swing.JFileChooser; import javax.swing.JFrame; import javax.swing.JPanel; public class ImageComparerUI extends JComponent implements ActionListener { /** * */ private static final long serialVersionUID = 1L; private JButton browseBtn; private JButton histogramBtn; private JButton compareBtn; private Dimension mySize; // image operator private MediaTracker tracker; private BufferedImage sourceImage; private BufferedImage candidateImage; private double simility; // command constants public final static String BROWSE_CMD = "Browse..."; public final static String HISTOGRAM_CMD = "Histogram Bins"; public final static String COMPARE_CMD = "Compare Result"; public ImageComparerUI() { JPanel btnPanel = new JPanel(); btnPanel.setLayout(new FlowLayout(FlowLayout.LEFT)); browseBtn = new JButton("Browse..."); histogramBtn = new JButton("Histogram Bins"); compareBtn = new JButton("Compare Result"); // buttons btnPanel.add(browseBtn); btnPanel.add(histogramBtn); btnPanel.add(compareBtn); // setup listener... browseBtn.addActionListener(this); histogramBtn.addActionListener(this); compareBtn.addActionListener(this); mySize = new Dimension(620, 500); JFrame demoUI = new JFrame("Similiar Image Finder"); demoUI.getContentPane().setLayout(new BorderLayout()); demoUI.getContentPane().add(this, BorderLayout.CENTER); demoUI.getContentPane().add(btnPanel, BorderLayout.SOUTH); demoUI.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); demoUI.pack(); demoUI.setVisible(true); } public void paint(Graphics g) { Graphics2D g2 = (Graphics2D) g; if(sourceImage != null) { Image scaledImage = sourceImage.getScaledInstance(300, 300, Image.SCALE_FAST); g2.drawImage(scaledImage, 0, 0, 300, 300, null); } if(candidateImage != null) { Image scaledImage = candidateImage.getScaledInstance(300, 330, Image.SCALE_FAST); g2.drawImage(scaledImage, 310, 0, 300, 300, null); } // display compare result info here Font myFont = new Font("Serif", Font.BOLD, 16); g2.setFont(myFont); g2.setPaint(Color.RED); g2.drawString("The degree of similarity : " + simility, 50, 350); } public void actionPerformed(ActionEvent e) { if(BROWSE_CMD.equals(e.getActionCommand())) { JFileChooser chooser = new JFileChooser(); chooser.showOpenDialog(null); File f = chooser.getSelectedFile(); BufferedImage bImage = null; if(f == null) return; try { bImage = ImageIO.read(f); } catch (IOException e1) { e1.printStackTrace(); } tracker = new MediaTracker(this); tracker.addImage(bImage, 1); // blocked 10 seconds to load the image data try { if (!tracker.waitForID(1, 10000)) { System.out.println("Load error."); System.exit(1); }// end if } catch (InterruptedException ine) { ine.printStackTrace(); System.exit(1); } // end catch if(sourceImage == null) { sourceImage = bImage; }else if(candidateImage == null) { candidateImage = bImage; } else { sourceImage = null; candidateImage = null; }
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值