最近做了一些图像处理的工作,故想着有时间时候整理一下,随着人工智能的发展,智能化的图像识别也越来越受到重视。以肝病的图像分类器为例,通过对每一位肝病患者的CT图像的特征部位提取,解算其相关的纹理特征,再利用机器学习的相关算法在纹理特征的基础上生成分类器,从而对患者的得病程度进行划分。
在这篇,先分享关于对图像分割以及特征提取的一些感悟
1)图像分割往往是图像处理的第一步,提取ROI区域并且忽略不重要信息往往是机器学习中信息提取的重要一步,提取的方式可以考虑首先手动框选,可以考虑例如MFC中onmouse函数操作来提取感兴趣的区域。
2)而图像分割往往可以实际问题来考量,例如非常传统的阈值分割、二次阈值分割、分水岭算法、GRabcut算法等,当然形态学中的处理算法也是不错的可以选择的方法。
3)接下来是信息提取,在机器学习分类中,很多时候大家都把重点放在机器学习算法上,其实个人认为往往信息提取是图像分类中更重要的一步,选取合理的信息提取信息,在后期机器学习的实现中往往会起到更重要的作用。(机器学习的算法只是来处理数据,而数据如果区分度越明显,当然效果将会越明显),针对B超或者这种CT图像,纹理特征是非常好的选择,也就是行程矩阵或者灰度共生矩阵等等。
4)机器学习算法的分类实现,这里自己所用的是opencv中自带的机器学习算法库,主要是利用随机森林进行了一个特征重要度选取(实现的依据袋外数据误差),再利用opencv中SVM和BP神经网络进行分类对比操作(其实opencv中机器学习的包确实比较成熟了,而且调用方便简洁很好操作),后期考虑是否可以去损失函数的优化算法进行改进避
基于图像识别的分类器的实现
最新推荐文章于 2024-09-21 08:14:22 发布
本文介绍了基于图像识别的肝病图像分类器实现过程,涉及图像分割、特征提取和机器学习算法。通过CT图像的纹理特征分析,使用随机森林选择特征,并用SVM和BP神经网络进行分类,最终获得约90%的分类准确率,证明纹理特征在图像分类中的有效性。
摘要由CSDN通过智能技术生成