题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3586
题目意思:给根节点为1的一棵树,删除一些边使叶子节点都不能到达根节点,并且边权和不能大于m,使删除边的最大值最小,求最小值。
思路:这个题如果想到二分答案就递推很简单了,二分出答案然后dp去验证。
dp[x]表示将x与它管辖的叶子节点失去联系所需要的总代价。
dp(x)+=min(dp(son),e[i].w),e[i].w<=limit;
dp(x)+=dp(son) e[i].w>limit;
注意将叶子节点设为inf
代码:
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const int maxn = 1e3 + 5;
const int mod = 1e9 + 7;
const int inf = 1000005;
int n,m;
struct edge{
int to,w;
};
int dp[maxn];
vector<edge>G[maxn];
void dfs(int x,int pre,int lmt){
for (int i=0;i<G[x].size();i++){
edge e=G[x][i];
if (e.to==pre) continue;
dfs(e.to,x,lmt);
if (e.w<=lmt) dp[x]+=min(dp[e.to],e.w);
else dp[x]+=dp[e.to];
}
if (G[x].size()==1&&pre!=-1) dp[x]=inf;
}
int main() {
while (~scanf ("%d%d",&n,&m)&&n){
for (int i=0;i<maxn;i++) G[i].clear();
for (int i=0;i<n-1;i++){
int u,v,w;
scanf ("%d%d%d",&u,&v,&w);
G[u].push_back(edge{v,w});
G[v].push_back(edge{u,w});
}
int ans=-1;
int l=1,r=maxn;
while (l<=r){
memset(dp,0,sizeof(dp));
int mid=(l+r)/2;
dfs(1,-1,mid);
if (dp[1]<=m) {
r=mid-1;
ans=mid;
}
else l=mid+1;
}
printf ("%d\n",ans);
}
return 0;
}