题目链接:http://codeforces.com/contest/955/problem/C
题意:q次查询,每次查询两个数,l和r,求l到r之间有多少个 x = a^p, (a > 0, p > 1)。
思路:最基础的想法应该是对两个数开n次方根(n从2到开了没变化为止),现在想怎么优化,显然n到3时就最多只有1e6个数,
所以n>=3最多也就只有不超过2e6个数,这里就可以预处理出来,预处理出的排个序然后去重就可以二分来找位置了,然后再单独判断开平方根的情况,两个加起来就是答案了,具体看代码。
注意:预处理时只要处理p为基数的情况,因为p为偶数时一定可以开平方根,然后long long的大数开根号要用二分来开,因为floor是double型的,精度不够。
代码:
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define fuck(x) cout<<"<"<<x<<">"<<endl
#define fi first
#define se second
#define pb push_back
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
using namespace std;
typedef long long LL;
typedef unsigned long long uLL;
typedef pair<int, int> pii;
const double PI = acos (-1.0);
const LL INFLL = 0x3f3f3f3f3f3f3f3fll;
const int maxn = 1e5 + 5;
const int mod = 998244353;
const LL lim=1e18;
int q;
LL l,r;
vector<LL>v;
LL sq(LL x){
LL l=1,r=1e9;
while (l<=r){
LL mid=(l+r)>>1;
if (mid*mid<=x) l=mid+1;
else r=mid-1;
}
return l-1;
}
int main() {
scanf ("%d",&q);
for (LL a=2;a<=1000000;a++){
LL x=floor(sqrt(a));
if (x*x==a) continue;
LL tmp=a*a*a;
while (1){
v.pb(tmp);
if (lim/tmp<a*a) break;
tmp*=a*a;
}
}
sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
while (q--){
scanf ("%lld%lld",&l,&r);
LL x1=upper_bound(v.begin(),v.end(),r)-v.begin();
LL x2=lower_bound(v.begin(),v.end(),l)-v.begin();
LL ans=sq(r)-sq(l-1)+x1-x2;
printf ("%lld\n",ans);
}
return 0;
}