一元二次方程标准形式: a x 2 + b x + c = 0 , a ≠ 0 ax^2+bx+c=0,a\ne0 ax2+bx+c=0,a=0
- 首先求判别式: Δ = b 2 − 4 a c \Delta=b^2-4ac Δ=b2−4ac
- 根据判别式了解根的存在情况: Δ { > 0 两个不相等的实数根 = 0 两个相等的实数根 < 0 没有实数根 \Delta\begin{cases}\ \gt0 \quad两个不相等的实数根 \\ =0 \quad 两个相等的实数根 \\ \lt0 \quad 没有实数根 \end{cases} Δ⎩ ⎨ ⎧ >0两个不相等的实数根=0两个相等的实数根<0没有实数根
- 目前只考虑 Δ ≥ 0 \Delta\ge0 Δ≥0的情况
- 计算两个实数根: { x 1 = − b + b 2 − 4 a c 2 a x 2 = − b − b 2 − 4 a c 2 a \begin{cases} x_1=\displaystyle\frac{-b+\sqrt{b^2-4ac}}{2a}\\ x_2=\displaystyle\frac{-b-\sqrt{b^2-4ac}}{2a} \end{cases} ⎩ ⎨ ⎧x1=2a−b+b2−4acx2=2a−b−b2−4ac
- 合成一个公式: x = − b ± b 2 − 4 a c 2 a 或 x = − b ∓ b 2 − 4 a c 2 a x=\displaystyle\frac{-b\pm\sqrt{b^2-4ac}}{2a}或x=\displaystyle\frac{-b\mp\sqrt{b^2-4ac}}{2a} x=2a−b±b2−4ac或x=2a−b∓b2−4ac
- ne: not equal 不等于
- gt: greater than 大于
- it: less than 小于
- quad: 空格
- ge: greater than or equal to 大于或等于
- frac: fraction 分数、分式
- displaystyle: 显示风格
- pm: plus minus 正负号
- mp: minus plus 负正号