1.内部表与外部表区别
①未被external修饰的是内部表[managed table],被external修饰的是外部表[external table];
②内部表由hive管理,外部表由hdfs管理;
③内部表数据存储在hive.metastore.warehose.dir[默认user/hive/warehouse],外部表数据存储位置由用户自己决定;(如果没有LOCATION,Hive将在HDFS上的/user/hive/warehouse文件夹下以外部表的表名创建一个文件夹,并将属于这个表的数据存放在这里);
④删除内部表会直接删除元数据[metadata]以及存储数据,删除外部表仅仅会删除元数据,存储在hdfs上的文件不会被删除;
⑤对内部表修改会直接同步到元数据,而对外部表的结构和分区进行修改则需要修改[MSCK REPAIR TABLE table_name];
⑥创建外部表:create external table XX;
⑦创建内部表:create table XX;
2.分区域分桶的区别
①分区针对的是数据的存储路径;分桶针对的是数据文件。
②分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区;
③分桶是将数据集分解成更容易管理的若干部分的另一个技术;
3.分桶抽样查询
对于非常大的数据集,有时用户需要使用的是一个具有代表性的查询结果而不是全部结果。Hive可以通过对表进行抽样来满足这个需求。
hive (default)> select * from stu_buck tablesample(bucket 1 out of 4 on id);
注:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y) 。
y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了4份,当y=2时,抽取(4/2=)2个bucket的数据,当y=8时,抽取(4/8=)1/2个bucket的数据。
x表示从哪个bucket开始抽取,如果需要取多个分区,以后的分区号为当前分区号加上y。例如,table总bucket数为4,tablesample(bucket 1 out of 2),表示总共抽取(4/2=)2个bucket的数据,抽取第1(x)个和第3(x+y)个bucket的数据。
注意:x的值必须小于等于y的值,否则
FAILED: SemanticException [Error 10061]: Numerator should not be bigger than denominator in sample clause for table stu_buck
若z表示具体bucket数,计算最后一个桶的抽样情况:
x+(z/y -1)*y=x+z-y 如果x>y,则上述公式>z,即x不能大于y
4.常用查询函数
①空字段赋值:NVL
NVL( string1, replace_with)
用法:如果string1为NULL,则NVL函数返回replace_with的值,否则返回string1的值,如果两个参数都为NULL ,则返回NULL。(replace_with,该字段,可以为一固定值,也可以是某列值);
②时间函数:
to_date:日期时间转日期函数
select to_date('2015-04-02 13:34:12');
输出:2015-04-02
from_unixtime:转化unix时间戳到当前时区的时间格式
select from_unixtime(1323308943,’yyyyMMdd’);
输出:20111208
unix_timestamp:获取当前unix时间戳
select unix_timestamp();
输出:1430816254
select unix_timestamp('2015-04-30 13:51:20');
输出:1430373080
year:返回日期中的年
select year('2015-04-02 11:32:12');
输出:2015
month:返回日期中的月份
select month('2015-12-02 11:32:12');
输出:12
day:返回日期中的天
select day('2015-04-13 11:32:12');
输出:13
hour:返回日期中的小时
select hour('2015-04-13 11:32:12');
输出:11
minute:返回日期中的分钟
select minute('2015-04-13 11:32:12');
输出:32
second:返回日期中的秒
select second('2015-04-13 11:32:56');
输出:56
weekofyear:返回日期在当前周数
select weekofyear('2015-05-05 12:11:1');
输出:19
datediff:返回开始日期减去结束日期的天数
select datediff('2015-04-09','2015-04-01');
输出:8
date_sub:返回日期前n天的日期
select date_sub('2015-04-09',4);
输出:2015-04-05
date_add:返回日期后n天的日期
select date_add('2015-04-09',4);
输出:2015-04-13
from_unixtime+ unix_timestamp Hive中yyyymmdd和yyyy-mm-dd日期之间的切换:先转换成时间戳,再由时间戳转换为对应格式。
--20171205转成2017-12-05
select from_unixtime(unix_timestamp('20171205','yyyymmdd'),'yyyy-mm-dd') from dual;
--2017-12-05转成20171205
select from_unixtime(unix_timestamp('2017-12-05','yyyy-mm-dd'),'yyyymmdd') from dual;
datediff:计算两个日期之间的天数
select datediff('2017-09-15','2017-09-01')
14
Hive中取最近30天数据
datediff(CURRENT_TIMESTAMP ,gmt_create)<=30
Hive中 两个日期相差多少小时
select (unix_timestamp('2018-05-25 12:03:55') - unix_timestamp('2018-05-25 11:03:55'))/3600
输出:1
Hive中 两个日期相差多少分钟
select (unix_timestamp('2018-05-25 12:03:55') - unix_timestamp('2018-05-25 11:03:55'))/60
输出:60
hive 计算某一个日期属于星期几,如2018-05-20 是星期日
SELECT IF(pmod(datediff('2018-05-20', '1920-01-01') - 3, 7)='0', 7, pmod(datediff('2018-05-20', '1920-01-01') - 3, 7))
输出:7
hive返回上个月第一天和最后一天
--上个月第一天
select trunc(add_months(CURRENT_TIMESTAMP,-1),'MM')
select concat(substr(add_months(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),-1),1,7),'-01');
--上个月最后一天
select date_sub(trunc(CURRENT_TIMESTAMP,'MM'),1);
--获取当前日期: current_date
select current_date;
2019-07-16
计算一年中的第几天:
select date_format('2011-12-08 10:03:01', 'D');
342
③case when
select
dept_id,
sum(case sex when '男' then '1' else 0 end) male_count,
sum(case sex when '女' then '1' else 0 end) famale_count
from emp_sex
group by dept_id
等价于
select
dept_id,
sum(if(sex='男',1,0)) male_count,
sum(if(sex='女',1,0)) famale_count
from emp_sex
group by dept_id
④ 行转列
(1)concat
CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字符串;
select concat(‘abc’,'def’,'gh’) from iteblog;
abcdefgh
(2)CONCAT_WS
CONCAT_WS(separator, str1, str2,...):
它是一个特殊形式的 CONCAT()。第一个参数剩余参数间的分隔符。分隔符可以是与剩余参数一样的字符串。
如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。
分隔符将被加到被连接的字符串之间;
select concat_ws(',','abc','def','gh') from iteblog;
abc,def,gh
(3)collect_set&collect_list
COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重汇总,产生array类型字段。
collect_list不去重;
两者通常都是需要结合groupby进行使用;
⑤列转行(参考)
(1)explode:
将hive一列中复杂的array或者map结构拆分成多行。
(2)LATERAL VIEW
用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias
lateral view 用于和UDTF相结合使用。他会将UDTF生成的结果放在一张虚拟表中(即lateral view里)。虚拟表相当于再和主表关联, 从而达到添加“UDTF生成的字段“以外的字段, 即主表里的字段或者主表运算后的字段。
select
movie,
category_name
from movie_info
lateral view explode(category) table_tmp as category_name