题目
给定一个整数 n,返回 n! 结果尾数中零的数量。
示例 1:
输入: 3
输出: 0
解释: 3! = 6, 尾数中没有零。
示例 2:
输入: 5
输出: 1
解释: 5! = 120, 尾数中有 1 个零.
说明: 你算法的时间复杂度应为 O(log n) 。
阶乘
一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。
亦即n!=1×2×3×…×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
方法1:
分析可以知道,从1 ~ 5的乘积可以得到一个0,6~10也可以得到一个0。也就是每有5就可以得到一个0。但随着数字的增大,我们会发现例如2524这样的组合,可以得到2个0。这是因为25可以分解成55,因此能提供2个0。根据这样的分析,我们就可以知道,0的个数是由n中有多少个5,多少个25,多少个125…组成的.
故依次计算有多少个5,多少个25,多少个125…即可得到解
class Solution {
public int trailingZeroes(int n) {
int result=0;
int div=5;
while(div<=n){
result+=n/div;
div*=5;
}
return result;
}
}
方法2:
class Solution {
public int trailingZeroes(int n) {
if(n==0)
return 0;
//能除开5都算
int fivetimes = 0;
//能除开2都算
int twotimes = 0;
//因为只有5和2相乘才可以是10。于是计算n中5的个数,要注意比如25其实是有两个5,
while(n>=5)
{
//每次都只加一层的个数
//第一层有5的个数(以25为例)
fivetimes+=n/5;
//除以5之后就变成了第二层(n中包含25的个数,如果有一个就会在第二层判断时+1)...以此类推之后是n中包含25*5=125的个数;
n=n/5;
}
return fivetimes;
}
}