172. 阶乘后的零

题目

给定一个整数 n,返回 n! 结果尾数中零的数量。

示例 1:

输入: 3
输出: 0
解释: 3! = 6, 尾数中没有零。

示例 2:

输入: 5
输出: 1
解释: 5! = 120, 尾数中有 1 个零.

说明: 你算法的时间复杂度应为 O(log n) 。

阶乘

一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。

亦即n!=1×2×3×…×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。

方法1:

分析可以知道,从1 ~ 5的乘积可以得到一个0,6~10也可以得到一个0。也就是每有5就可以得到一个0。但随着数字的增大,我们会发现例如2524这样的组合,可以得到2个0。这是因为25可以分解成55,因此能提供2个0。根据这样的分析,我们就可以知道,0的个数是由n中有多少个5,多少个25,多少个125…组成的.

故依次计算有多少个5,多少个25,多少个125…即可得到解

class Solution {
    public int trailingZeroes(int n) {
        int result=0;
        int div=5;
        while(div<=n){
            result+=n/div;
            div*=5;
        }
        return result;
    }
}

在这里插入图片描述

方法2:

https://leetcode-cn.com/problems/factorial-trailing-zeroes/solution/javachao-xiang-xi-ti-jie-by-coder_hezi/

class Solution {
    public int trailingZeroes(int n) {
        if(n==0)
            return 0;
        //能除开5都算
        int fivetimes = 0;
        //能除开2都算
        int twotimes = 0;
        //因为只有5和2相乘才可以是10。于是计算n中5的个数,要注意比如25其实是有两个5,
        while(n>=5)
        {
            //每次都只加一层的个数

            //第一层有5的个数(以25为例)
            fivetimes+=n/5;
            //除以5之后就变成了第二层(n中包含25的个数,如果有一个就会在第二层判断时+1)...以此类推之后是n中包含25*5=125的个数;
            n=n/5;
        }
        return fivetimes;
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值