哈夫曼编码

本文详细介绍了哈夫曼编码的过程,通过构建哈夫曼树实现数据的高效压缩。通过对字符串“good good study day day up”进行哈夫曼编码,展示了编码方法,并计算了压缩前后的比特数,说明了哈夫曼编码在数据压缩中的优势。
摘要由CSDN通过智能技术生成

首先统计每个字母在字符串里出现的频率,我们把每个字母看成一个结点,结点的权值即是字母出现的频率,我们把每个结点看成一棵只有根结点的二叉树,一开始把所有二叉树都放在一个集合里。接下来开始如下编码:

步骤一:从集合里取出两个根结点权值最小的树 a 和 b,构造出一棵新的二叉树 c,二叉树 c 的根结点的权值为 a 和 b 的根结点权值和,二叉树 c 的左右子树分别是 a 和 b。

步骤二:将二叉树 a 和 b 从集合里删除,把二叉树 c 加入集合里。
重复以上两个步骤,直到集合里只剩下一棵二叉树,最后剩下的就是哈夫曼树了。
我们规定每个有孩子结点的结点,到左孩子结点的路径为 0,到右孩子结点的路径为 1。每个字母的编码就是根结点到字母对应结点的路径。

例如有这一个字符串“good good study day day up”,现在我们要对字符串进行哈夫曼编码,该字符串一共有 26 个字符,10 种字符,我们首先统计出每个字符的频率,然后按从大到小顺序排列如下(第二列的字符是空格):

Clipboard Image.png

我们把每个字符看成一个结点,权值是字符的频率,每个字符开始都是一棵只有根结点的二叉树,如下图。

Clipboard Image.png


1.从集合里取出根结点权值最小的两棵树 I 和 J 组成新的二叉树 IJ,根结点权值为 1 + 1 = 2,将二叉树 IJ 加入集合,把 I 和 J 从集合里删除,如下图。

Clipboard Image.png

2.从集合里取出根结点权值最小的两棵树 H 和 G 组成新的二叉树 HG,根结点权值为 1 + 2 = 3,将二叉树 HG 加入集合,把 H 和 G 从集合里删除,如下图。

Clipboard Image.png

3.从集合里取出根结点权值最小的两棵树 E 和 F 组成新的二叉树 EF,根结点权值为 2 + 2 = 4,将二叉树 EF 加入集合,把 E 和 F 从集合里删除,如下图。

Clipboard Image.png

4.从集合里取出根结点权值最小的两棵树 IJ 和 D 组成新的二叉树 IJD,根结点权值为 2 + 3 = 5,将二叉树 IJD 加入集合,把 IJ 和 D 从集合里删除,如下图。

Clipboard Image.png

5.从集合里取出根结点权值最小的两棵树 GH 和 C 组成新的二叉树 GHC,根结点权值为 3 + 4 = 7,将二叉树 GHC 加入集合,把 GH 和 C 从集合里删除,如下图。

Clipboard Image.png

6.从集合里取出根结点权值最小的两棵树 EF 和 B 组成新的二叉树 EFB,根结点权值为 4 + 5 = 9,将二叉树 EFB 加入集合,把 EF 和 B 从集合里删除,如下图。

Clipboard Image.png

7.从集合里取出根结点权值最小的两棵树 IJD 和 A 组成新的二叉树 IJDA,根结点权值为 5 + 5 = 10,将二叉树 IJDA 加入集合,把 IJD 和 A 从集合里删除,如下图。

Clipboard Image.png


8.从集合里取出根结点权值最小的两棵树 EFB 和 GHC 组成新的二叉树 EFBGHC,根结点权值为 9 + 7 = 16,将二叉树 EFBGHC 加入集合,把 EFB 和 GHC 从集合里删除,如下图。

Clipboard Image.png

9.从集合里取出根结点权值最小的两棵树 EFBGHC 和 IJDA 组成新的二叉树 EFBGHCIJDA,根结点权值为 16 + 10 = 26,将二叉树 EFBGHCIJDA 加入集合,把 EFBGHC 和 IJDA 从集合里删除,如下图。

Clipboard Image.png

到这里我们发现集合里就剩一棵二叉树了,那么编码结束,最后这棵二叉树就是我们要得到的哈夫曼树。接下来我们规定非叶子结点的结点,到左子树的路径记为 0,到右子树的路径记为 1,如下图:

Clipboard Image.png


 

根结点到每个叶子结点的路径便是其对应字母的编码了,于是我们可以得到:

Clipboard Image.png

下面我们来算一下哈夫曼树的带权路径长度 WPL,也就是每个叶子到根的距离乘以叶子权值结果之和。

WPL = 5 * 2 + 5 * 3 + 4 * 3 + 3 * 3 + 2 * 4 + 2 * 4 + 2 * 4 + 1 * 4 + 1 * 4 + 1 * 4 = 82。

我们来算下如果直接存储字符串需要多少个比特,我们知道一个字符占一个字节,一个字节占 8 个比特,所以一共需要 8 * 26 = 208 个比特。我们再来看看哈夫曼编码需要多少个比特,我们可以发现 WPL 也就是编码后原来字符串所占的比特总长度 82。显然,哈夫曼编码把原数据压缩了好多,而且没有损失。

优先队列解哈夫曼编码

当哈夫曼树上结点总个数大于 1 时,哈夫曼树的 WPL,等于树上除根结点之外的所有结点的权值之和。如果结点总个数为 1,则哈夫曼树的 WPL 即为根结点权值。

using namespace std;
class Heap {
private:
    int *data, size;
public:
    Heap(int length_input) {
        data = new int[length_input];
        size = 0;
    }
    ~Heap() {
        delete[] data;
    }
    void push(int value) {
        data[size] = value;
        int current = size;
        int father = (current - 1) / 2;
        while (data[current] < data[father]) {
            swap(data[current], data[father]);
            current = father;
            father = (current - 1) / 2;
        }
        size++;
    }
    int top() {
         return data[0];
    }
    void update(int pos, int n) {
        int lchild = 2 * pos + 1, rchild = 2 * pos + 2;
        int min_value = pos;
        if (lchild < n && data[lchild] < data[min_value]) {
            min_value = lchild;
        }
        if (rchild < n && data[rchild] < data[min_value]) {
            min_value = rchild;
        }
        if (min_value != pos) {
            swap(data[pos], data[min_value]);
            update(min_value, n);
        }
    }
    void pop() {
        swap(data[0], data[size - 1]);
        size--;
        update(0, size);
    }
    int heap_size() {
        return size;
    }
};
int main() {
    int n,value,ans=0;
    cin >>n;
    Heap heap(n);
    for(int i=1;i<=n;i++)
    {
        cin>>value;
        heap.push(value);
    }
    if(n==1){
        ans+=heap.top();
    }   
    while(heap.heap_size()>1){
        int a=heap.top();
        heap.pop();
        int b=heap.top();
        heap.pop();
        ans=ans+a+b;
        heap.push(a+b);
    }
    cout<<ans<<endl;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值