- 博客(4)
- 收藏
- 关注
原创 【论文学习笔记】AttnGAN: Fine-Grained Text to Image Generation(2018)
在本文中,我们提出了一个注意力生成对抗网络(AttnGAN),它允许注意力驱动的多阶段细化,以实现细粒度的文本到图像生成。AttnGAN利用一种新的注意力生成网络,通过关注自然语言描述中的相关词语,可以在图像的不同子区域合成细粒度的细节。此外,提出了一种深度注意力多模态相似性模型来计算细粒度的图像-文本匹配损失,用于训练生成器。所提出的AttnGAN显著优于先前的最新技术水平,在CUB数据集上将最佳报告的初始得分提高了14.14%,在更具挑战性的COCO数据集上提高了170.25%。
2023-06-29 16:34:08 1071 1
原创 【学习笔记】GAN--李宏毅(下)
图像翻译模型,可以将一张输入图像转换成多个不同域中的图像,例如将一张人脸图像转换为不同年龄、性别、发型、眼镜等不同特征的图像。,生成器接收一个输入图像并根据目标域的条件生成相应的输出图像。判别器则用于判断生成的图像是否为真实的图像,同时也要判断这张图像属于哪一个域。在机器学习中,条件信息通常是指一些额外的输入,例如类别标签、文本描述、图像等信息,这些信息有助于生成模型生成特定类型的数据。FID的计算基于图像的统计特征,具体而言,它使用了Inception网络在图像分类任务上的。,然后计算它们之间的。
2023-06-27 15:13:33 149 1
原创 寻找序列中第 K 小元素(分治法)C++
该代码中定义一个函数在指定区间中寻找,当区间中至少有。两个元素时,我们需要定义一个基数,从前面和后面开始,将数组分。对于此题目,利用分治法的思想,将复杂的问题变为多个类似的。为两个区域,左边为比基数小的,右边为比基数小的。当区间中只有一个元素时,直接返回。实现一个从数组中寻找第。,在左区间递归查找;掌握分治法的基本思想。输入一个乱序的数组和。
2023-03-29 21:01:40 1291 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人