循环-21. 求交错序列前N项和(15)

本题要求编写程序,计算交错序列 1-2/3+3/5-4/7+5/9-6/11+... 的前N项之和。

输入格式:

输入在一行中给出一个正整数N。

输出格式:

在一行中输出部分和的值,结果保留3位小数。

输入样例:
5
输出样例:
0.917
#include<stdio.h>
#include<math.h>
int main(void)
{
	int deno=1,fl=1,i,n;
	double sum=0;
	scanf("%d",&n);
	for(i=0;i<n;i++){
		sum+=1.0*fl/deno*pow(-1,i%2);
		fl++;
		deno=2*fl-1;
	}
	printf("%.3lf",sum);
	return 0;
} 


### 回答1: 简单交错序列的定义是:1,-2,3,-4,5,-6,7,-8,…… n和的公式为:S(n) = 1 - 2 + 3 - 4 + … + (-1)^(n+1) * n 其中,(-1)^(n+1)表示n的奇偶性,当n为奇数时,(-1)^(n+1)为-1,当n为偶数时,(-1)^(n+1)为1。 因此,可以使用循环语句计算简单交错序列n和,具体代码如下: ```python n = int(input("请输入n的值:")) sum = for i in range(1, n+1): if i % 2 == : sum -= i else: sum += i print("", n, "和为:", sum) ``` 输入n的值后,程会依次计算1到n的每一,并根据奇偶性加减相应的数值,最终输出n和。 ### 回答2: 简单交错序列是一种由一串交错的正负数相加而成的序列如下所示: 1,-2,3,-4,5,-6,7,-8...... 一个简单交错序列n的和,需要先通过数学公式推导出通公式。 通公式可以表示为:an = (-1)^(n+1) * n 其中,(-1)^(n+1)表示n的奇偶性,若n为奇数,则(-1)^(n+1) = -1;若n为偶数,则(-1)^(n+1) = 1。n是指序列的第n。 接着,就可以使用公式来n的和了。具体方法是将序列的每一加起来: S(n) = a1 + a2 + ... + an 由于通公式中n是从1开始计算的,因此需要将序列的第一设置为a1,即: a1 = 1 代入通公式中,可得: a2 = (-1)^(2+1) * 2 = -2 a3 = (-1)^(3+1) * 3 = 3 a4 = (-1)^(4+1) * 4 = -4 ...... 然后将每一加起来,就可以得到n的和了: S(n) = 1 - 2 + 3 - 4 + ... + (-1)^(n+1) * n 如果n为偶数,最后一为正数;如果n为奇数,最后一为负数。这个时候需要特判处理一下。可以使用if语句来判断n的奇偶性,进而得到最后一的符号。 总之,一个简单交错序列n的和,需要先找到它的通公式,再将每一加起来即可。 ### 回答3: 简单交错序列是指序列的相邻正负号交替出现,例如-1,2,-3,4,-5,6……对于一个给定的简单交错序列,我们需要n的和。 解题思路: 我们可以使用一个循环来遍历序列n,对于每一,如果它的下标为偶数,则将它加入序列的和中;如果它的下标为奇数,则将它的相反数加入序列的和中。 具体实现: 我们可以定义一个函数sum_of_alternating_series(n, series),其中n为要数,series为简单交错序列。函数的实现如下: def sum_of_alternating_series(n, series): result = 0 for i in range(n): if i % 2 == 0: result += series[i] else: result -= series[i] return result 这个函数定义了一个变量result来保存序列的和,循环遍历序列n,如果当的下标为偶数,则将它加入result中,否则将它的相反数加入result中。最后返回result即为简单交错序列n的和。 总结: 本题要解简单交错序列n的和,我们可以利用循环遍历序列n,根据每一的下标来决定加和还是减和。这个过程可以使用定义变量和分支结构进行实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值