力扣62. 不同路径

Problem: 62. 不同路径

题目描述

在这里插入图片描述在这里插入图片描述

思路

1.定义状态:定义二维数组dp[i][j],用于表示记录当前到矩阵(i,j)位置处有多少不同路径
2.状态初始化:由题目易知初始时位于矩阵的右上角,而且机器人只能向右或者向下移动,所以我们将dp数组的第一行列(除去dp[0][0]位置)均赋值为1,表示机器人走到此位置只能有一条路径;
3.动态转移:由于机器人只能向右或者向下移动所以易知dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

复杂度

时间复杂度:

O ( m × n ) O(m \times n) O(m×n);其中 m m m是矩阵的行数, n n n是矩阵的列数

空间复杂度:

O ( m × n ) O(m \times n) O(m×n)

Code

class Solution {
public:
	/// <summary>
	/// Find the sum of all paths
	/// from the upper right corner to the lower left corner of the matrix
	/// </summary>

	/// <param name="m"> The number of rows of the matrix </param>
	/// <param name="n"> The number of columns of the matrix </param>
	/// <returns> int </returns>
	int uniquePaths(int m, int n) {
        if (m == 1 && n == 1) {
            return 1;
        }
		vector<vector<int>> dp(m, vector<int>(n));
		for (int j = 1; j < n; ++j) {
			dp[0][j] = 1;
		}
		for (int i = 1; i < m; ++i) {
			dp[i][0] = 1;
		}
		for (int i = 1; i < m; ++i) {
			for (int j = 1; j < n; ++j) {
				dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
			}
		}
		return dp[m - 1][n - 1];
	}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值