Problem: 62. 不同路径
题目描述
思路
1.定义状态:定义二维数组dp[i][j],用于表示记录当前到矩阵(i,j)位置处有多少不同路径;
2.状态初始化:由题目易知初始时位于矩阵的右上角,而且机器人只能向右或者向下移动,所以我们将dp数组的第一行列(除去dp[0][0]位置)均赋值为1,表示机器人走到此位置只能有一条路径;
3.动态转移:由于机器人只能向右或者向下移动所以易知dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
复杂度
时间复杂度:
O ( m × n ) O(m \times n) O(m×n);其中 m m m是矩阵的行数, n n n是矩阵的列数
空间复杂度:
O ( m × n ) O(m \times n) O(m×n)
Code
class Solution {
public:
/// <summary>
/// Find the sum of all paths
/// from the upper right corner to the lower left corner of the matrix
/// </summary>
/// <param name="m"> The number of rows of the matrix </param>
/// <param name="n"> The number of columns of the matrix </param>
/// <returns> int </returns>
int uniquePaths(int m, int n) {
if (m == 1 && n == 1) {
return 1;
}
vector<vector<int>> dp(m, vector<int>(n));
for (int j = 1; j < n; ++j) {
dp[0][j] = 1;
}
for (int i = 1; i < m; ++i) {
dp[i][0] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
}
}
return dp[m - 1][n - 1];
}
};