【从逻辑回归到CNN】模型评估指标(手写)

本文深入探讨了模型评估中的关键指标,包括训练集、验证集和测试集的使用,以及正确率、查准率、查全率、F1分数、P-R曲线和ROC曲线的计算与理解。同时,AUC作为衡量分类性能的重要指标也在文中进行了阐述,旨在帮助读者全面掌握模型性能的评估方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型评估指标,本文解释以下内容:

  1. 训练集、验证集、测试集
  2. 模型评价指标:正确率、查准率、查全率、F1、P-R曲线、ROC曲线、AUC 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值