大蒟蒻来水贴了!
算术基本定理(唯一分解定理)
一句话:
任何大于1的自然数,都可以唯一分解成有限个质数的乘积
例如对于大于1的自然数n,
这里P
i
均为质数,其指数a
i
是正整数。
这样的分解称为的标准分解式。
唯一分解定理具有:
①唯一性(分配方式的唯一性)
②存在性
证明:
百度百科+自己胡搞了+自己以前做的笔记
①唯一性
首先明确一个事实,若p是ab的约数(p|ab,p可以整除ab),则p不是a的约数,就是b的约数。
如果p是a的约数则证毕。如果p不是a的约数,则p和a的最大公约数为1。
则由裴蜀定理推得,因为使a,b互质的充要条件是存在整数x,y使ax+by=1。
于是b=b(ma+np) =abm+bnp(……);
因为先前已经知道p是ab的约数,则上式右边两项都可以被p整除。
所以p就是b的约数。
唯一性得证。
②存在性
假设n为不能被分为质数的乘积的自然数之一,切n为最小
因为设n为大于1的合数(如果n为质数,则只有n=n,显然这是质数的乘积)
因为每个合数都可以分为两个大于1小于它的两自然数的乘积
所以n=a×b
又因为n为不能被分为质数的乘积的自然数中最小的一个
所以a和b可以分为质数的乘积
所以n已就可以分为质数的乘积,与假设不符合,故假设错误
存在性得证。
现在我们来看下下下面这个式子:
已知gcd[最小公约数] (a,b),lcm[最大公倍数] (a,b);
a×b=gcd(a,b)×lcm(a,b)
a=12;b=14
gcd(a,b)=2 ; lcm(a,b)=84 ;
tot=168 [gcd(a,b)×lcm(a,b)]
a×b=12×14=168
然后
12=3×4
14=2×7
:
:
12=2^1×2^1×3^1
14=2^1×7^1
所以 max=7^1×3^1×=21
min=2^1×2^1×2^1=8
min×max=168 = gcd(a,b)×lcm(a,b) = a×b
所以gcd(a,b)×lcm(a,b) = a×b
证明:
设x=gcd(a,b),y=lcm(a,b)
则a=m×x,b=n×x,m与n互质
故y=m×n*x
因此x×y=x×(m×n×x)=(m×x)×(n×x)=a×b
即a×b=gcd(a,b)×lcm(a,b)
THE END
Thank you for watching