洛谷P1801 黑匣子

题目描述

Black Box是一种原始的数据库。它可以储存一个整数数组,还有一个特别的变量i。最开始的时候Black Box是空的.而i等于0。这个Black Box要处理一串命令。

命令只有两种:

ADD(x):把x元素放进BlackBox;

GET:i加1,然后输出Blackhox中第i小的数。

记住:第i小的数,就是Black Box里的数的按从小到大的顺序排序后的第i个元素。例如:

我们来演示一下一个有11个命令的命令串。(如下图所示)

这里写图片描述

现在要求找出对于给定的命令串的最好的处理方法。ADD和GET命令分别最多200000个。现在用两个整数数组来表示命令串:

1.A(1),A(2),…A(M):一串将要被放进Black Box的元素。每个数都是绝对值不超过2000000000的整数,M$200000。例如上面的例子就是A=(3,1,一4,2,8,-1000,2)。

2.u(1),u(2),…u(N):表示第u(j)个元素被放进了Blaek Box里后就出现一个GET命令。例如上面的例子中u=(l,2,6,6)。输入数据不用判错。

输入输出格式

输入格式:
第一行,两个整数,M,N。

第二行,M个整数,表示A(l)

……A(M)。

第三行,N个整数,表示u(l)

…u(N)。

输出格式:
输出Black Box根据命令串所得出的输出串,一个数字一行。

输入输出样例

输入样例#1:
7 4
3 1 -4 2 8-1000 2
1 2 6 6
输出样例#1:
3
3
l
2
说明

对于30%的数据,M≤10000;

对于50%的数据,M≤100000:

对于100%的数据,M≤200000。

说实话这道题我脑洞了好多做法比如想弄一个带序号的堆(笑哭)结果发现那样子做其实就是sort+for循环。。。然后想到BST。。结果。。我!不!会!写! 想求助于STL的map 可是我!不!会!用!可!重!集! 然后想暴利写法 即先全部读入并sort一遍而且记录次序。对于每一次get强行判断。。。后来。。又脑洞了一下。。发现开两个堆对着弹其实就可以。。实现很简单。一个堆维护1—i-1 另一个维护i-n 每次get只需要把一个堆的堆顶弹进另一个堆即可。

#include<bits/stdc++.h>

using namespace std;
const int maxn = 500000;
struct Node{
    int x;
    bool operator <(const Node& a)const{return x>a.x;}
};

priority_queue<int> Q1;
priority_queue<Node> Q2;

int a[maxn],b[maxn];

int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for (int i=0;i<n;i++)
        scanf("%d",a+i);
    for (int i=0;i<m;i++)
    {
        int x;
        scanf("%d",&x);
        b[x-1]++;
    }
    for (int i=0;i<n;i++)
    {
        if (Q1.empty()||(Q1.top()<a[i])) Q2.push((Node){a[i]});
        else
        {
            int x=Q1.top();
            Q1.pop();
            Q1.push(a[i]);
            Q2.push((Node){x});
        }
        while(b[i])
        {
            int x=Q2.top().x;
            Q2.pop();
            printf("%d\n",x);
            Q1.push(x);
            b[i]--;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值