题目描述 Description
1920年的芝加哥,出现了一群强盗。如果两个强盗遇上了,那么他们要么是朋友,要么是敌人。而且有一点是肯定的,就是:
我朋友的朋友是我的朋友;
我敌人的敌人也是我的朋友。
两个强盗是同一团伙的条件是当且仅当他们是朋友。现在给你一些关于强盗们的信息,问你最多有多少个强盗团伙。
输入描述 Input Description
输入文件gangs.in的第一行是一个整数N(2<=N<=1000),表示强盗的个数(从1编号到N)。 第二行M(1<=M<=5000),表示关于强盗的信息条数。 以下M行,每行可能是F p q或是E p q(1<=p q<=N),F表示p和q是朋友,E表示p和q是敌人。输入数据保证不会产生信息的矛盾。
输出描述 Output Description
输出文件gangs.out只有一行,表示最大可能的团伙数。
样例输入 Sample Input
6
4
E 1 4
F 3 5
F 4 6
E 1 2
样例输出 Sample Output
3
数据范围及提示 Data Size & Hint
2<=N<=1000
1<=M<=5000
1<=p q<=N
题目询问最多团伙数,则按题目要求将必须处于同一团伙的强盗合并,再统计团伙数就可以了
并查集拓展域做法,a,b处于同一集合表示a,b为朋友,a,b + n或a + n,b处于同一集合表示为敌人
设a,b为敌人,则合并a,b + n以及a + n,b;若新添一组关系E b c,则合并b + n,c时,c与a就处于了同一集合中
其实利用了关系只可能有两种,像等式那个题一样
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 100000 + 50;
int fa[MAXN],rank[MAXN];
bool exist[MAXN];
void init(int n)
{
for(int i = 1;i <= n;i ++)
{
fa[i] = i;
}
}
int find(int x)
{
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
void merge(int a,int b)
{
a = find(a);b = find(b);
if(rank[a] < rank[b])swap(a,b);
fa[b] = a;
if(rank[a] == rank[b])rank[a] ++;
}
int n,m,a,b;
char c;
int ans = 0;
int main()
{
scanf("%d%d",&n,&m);
init(n << 2);
for(int i = 1;i <= m;i ++)
{
cin >> c;
if(c == 'E')
{
scanf("%d%d",&a,&b);
merge(a + n,b);
merge(a,b + n);
}
else
{
scanf("%d%d",&a,&b);
merge(a,b);
}
}
for(int i = 1;i <= n;i ++)
{
int temp = find(i);
exist[temp] = true;
}
for(int i = 1;i <= n << 2;i ++)
{
if(exist[i])ans ++;
}
printf("%d",ans);
return 0;
}
毕竟范围小……