力扣题目训练(6)

本文介绍了2024年1月30日的编程训练,包括从简单到困难的五道题目:有效完全平方数、猜数字大小、赎金信、恢复二叉搜索树和构造二叉树(包括N皇后)。通过分析,展示了如何运用二分法、哈希表和回溯法等技术解决问题。
摘要由CSDN通过智能技术生成

2024年1月30日力扣题目训练

2024年1月30日第六天编程训练,今天主要是进行一些题训练,包括简单题3道、中等题2道和困难题1道。对于一些经典题目的掌握还是有点小问题,需要利用我们已知的性质去完成。

367. 有效的完全平方数

链接: 完全平方数
难度: 简单
题目:
题目描述
运行示例:
运行示例
思路:
这个题试求平方,但是不能用自带的函数,需要自己写,我观察到一个数的平方根一般都小于等于这个数的一半,我的思路就是基于这一点完成的。官方的话就是采用二分法,因为这个数的平方根一定位于某一区间内,用二分法进行查找。还有其他方法大家可以点击链接查看。
代码:

class Solution {
public:
    bool isPerfectSquare(int num) {
        if( num == 1) return true;
        for(long i = 1; i <= num/2; i++){
            if(i*i == num) return true;
            if(i*i > num) return false;
        }
        return false;
    }
};

374. 猜数字大小

链接: 猜数字
难度: 简单
题目:
题目描述

运行示例:
运行示例

思路:
这也是在一个区间里找数的问题,所以我采用了二分法。
代码:

class Solution {
public:
    int guessNumber(int n) {
        int left = 1;
        int right = n;
        while(left <= right){
            int mid = left + (right - left) / 2;
            if(guess(mid) == 0) return mid;
            else if(guess(mid) == -1){
                right = mid - 1;
            }
            else{
                left = mid + 1;
            }
        }
        return -1;
    }
};

383. 赎金信

链接: 赎金信
难度: 简单
题目:
题目描述

运行示例:
运行示例

思路:
这道题就是看一个字符串中的字母是否能组成另一个字符串,我采用哈希表记录字母出现次数,然后进行对比。
代码:

class Solution {
public:
    bool canConstruct(string ransomNote, string magazine) {
        if(ransomNote.size() > magazine.size()) return false;
        unordered_map<char,int> res;
        for(int i = 0; i < magazine.size(); i++){
            res[magazine[i]]++;
        }
        for(int i = 0; i < ransomNote.size(); i++){
            if(res[ransomNote[i]] == 0) return false;
            else res[ransomNote[i]]--;
        }
        return true;
    }
};

99. 恢复二叉搜索树

链接: 二叉搜索树
难度: 中等
题目:
题目描述

运行示例:
运行示例

思路:
对于二叉搜索树,如果对其进行中序遍历,得到的值序列是递增有序的。不过我知道这条性质,但是不知道怎么搞,所以我看了官方的方法,记录这两位置然后进行交换。
代码:

class Solution {
public:
    void inorder(TreeNode* root, vector<int>& nums){
        if(root == NULL) return;
        inorder(root->left,nums);
        nums.push_back(root->val);
        inorder(root->right,nums);
    }
    void recover(TreeNode* root, int x, int y, int count){
        if(root != NULL){
            cout<< root->val <<endl;
            if(root->val == x || root->val == y){
                root->val = (root->val == x)? y:x;
                count--;
                if(count <= 0) return;
            }
            recover(root->left,x,y,count);
            recover(root->right,x,y,count);
        }   
    }
    void recoverTree(TreeNode* root) {
        if(root == NULL) return;
        vector<int> nums;
        inorder(root,nums);
        int index1 = -1;
        int index2 = -1;
        for(int i = 0; i < nums.size()-1; i++){
            if(nums[i+1] < nums[i]){
                index2 = i+1;
                if(index1 == -1){
                    index1 = i;
                }else{
                    break;
                }
            }
        }
        int x = nums[index1];
        int y = nums[index2];
        recover(root, x, y, 2);
    }
};

105. 从前序与中序遍历序列构造二叉树

链接: 构造二叉树
难度: 中等
题目:
题目描述

运行示例:
运行示例

思路:
二叉树前序遍历的顺序为:根左右。
二叉树中序遍历的顺序为:左根右。
根据这一性质,我采用了递归利用根结点的位置进行构造。
代码:

class Solution {
private:
    unordered_map<int, int> index;   
public:
    TreeNode* build(vector<int>& preorder, vector<int>& inorder, int pleft, int pright, int ileft, int iright){
        if(pleft > pright || ileft > iright) return NULL;
        int preorder_root = pleft;
        int inorder_root = index[preorder[preorder_root]];
        TreeNode* root = new TreeNode(preorder[preorder_root]);
        int size_left_tree = inorder_root - ileft;
        root->left = build(preorder,inorder,pleft+1,pleft+size_left_tree,ileft,inorder_root-1);
        root->right = build(preorder,inorder,pleft+size_left_tree+1,pright,inorder_root+1,iright);
        return root;
    }
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if(preorder.size() != inorder.size() || preorder.size() == 0) return NULL;
        for (int i = 0; i < inorder.size(); ++i) {
            index[inorder[i]] = i;
        }
        return build(preorder,inorder,0,preorder.size()-1,0,preorder.size()-1);
    }
};

51. N 皇后

链接: N 皇后
难度: 困难
题目:
题目描述

运行示例:
运行示例

思路:
N皇后是比较经典的一类题,利用的是回溯法。
代码:

class Solution {
private:
    vector<vector<string>> res;
public:
    bool isValid(vector<string>& board,int row, int col){
        int n = board.size();
        for(int i = 0; i < n; i++){
            if(board[i][col] == 'Q') return false;
        }
        for (int a = row, b = col; a >= 0 && b >= 0; a--, b--) { // 左上
            if (board[a][b] == 'Q') return false;
        }
        for (int a = row, b = col; a >= 0 && b < n; a--, b++) { // 右上
            if (board[a][b] == 'Q') return false;
        }
        return true;
    }
    void backtrack(vector<string>&board,int row,int n){
        if(row == n) 
        {
            res.push_back(board);
            return;
        }
        for(int i = 0; i < n; i++){
            if(isValid(board,row,i)){
                board[row][i] = 'Q';
                backtrack(board,row+1,n);
                board[row][i] = '.';
            }
        }
    }
    vector<vector<string>> solveNQueens(int n) {
        vector<string> board(n, string(n, '.'));
        backtrack(board, 0,n);
        return res;

    }
};


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值