红黑树(Red Black Tree) 是一种自平衡二叉查找树,既然是一种自平衡二叉查找树,那么,我们就一步一步的了解,下面小编就先解释什么是树。
树的概述
树具有的特点:
- 1、每个节点有零个或多个子节点
- 2、没有父节点的节点称为根节点
- 3、每一个非根节点有且只有一个父节点
- 4、除了根节点外,每个子节点可以分为多个不相交的子树
如下图:
名词理解:
- 二叉树:二叉树是每个节点最多有两个子树的树结构。
- 节点:指树中的一个元素;
- 根节点:一棵树最上面的节点称为根节点。
- 父节点:若一个节点含有子节点,则这个节点称为子节点的父节点
- 子节点:子节点是父节点的下一层节点;
- 叶子节点:没有任何子节点的节点称为叶子节点,也称为终端节点。
- 兄弟节点:拥有共同父节点的节点互称为兄弟节点
- 节点的度: 指节点拥有的子树的个数,二叉树的度不大于2;如上图:B 的度为 2,F 的度为 1,D 的度为 0。
- 树的深度:从根节点开始(其深度为0)自顶向下逐层累加的。上图中,A 的深度是 0,B 的深度是 1,F 的深度是 2。
- 树的高度:从叶子节点开始(其高度为0)自底向上逐层累加的。B 的高度是 1,根节点 A 的高度是 3。
- 节点的层次:从根节点开始,根节点为第一层,根的子节点为第二层,以此类推
注意:
对于树中相同深度的每个节点来说,它们的高度不一定相同,这取决于每个节点下面的叶子节点的深度。上图中,B 和 C 的深度都是1,但是 B 的高度是1,C 的高度是2。
度的示意图:
节点的层次示意图:
树的概述小编就介绍到这里,如有疑问请留言!!!