红黑树 -- 树的概述

  红黑树(Red Black Tree) 是一种自平衡二叉查找树,既然是一种自平衡二叉查找树,那么,我们就一步一步的了解,下面小编就先解释什么是树。

树的概述

 树具有的特点:
  • 1、每个节点有零个或多个子节点
  • 2、没有父节点的节点称为根节点
  • 3、每一个非根节点有且只有一个父节点
  • 4、除了根节点外,每个子节点可以分为多个不相交的子树

如下图:
在这里插入图片描述

 名词理解:
  • 二叉树:二叉树是每个节点最多有两个子树的树结构。
  • 节点:指树中的一个元素;
  • 根节点:一棵树最上面的节点称为根节点。
  • 父节点:若一个节点含有子节点,则这个节点称为子节点的父节点
  • 子节点:子节点是父节点的下一层节点;
  • 叶子节点:没有任何子节点的节点称为叶子节点,也称为终端节点。
  • 兄弟节点:拥有共同父节点的节点互称为兄弟节点
  • 节点的度: 指节点拥有的子树的个数,二叉树的度不大于2;如上图:B 的度为 2,F 的度为 1,D 的度为 0。
  • 树的深度:从根节点开始(其深度为0)自顶向下逐层累加的。上图中,A 的深度是 0,B 的深度是 1,F 的深度是 2。
  • 树的高度:从叶子节点开始(其高度为0)自底向上逐层累加的。B 的高度是 1,根节点 A 的高度是 3。
  • 节点的层次:从根节点开始,根节点为第一层,根的子节点为第二层,以此类推

注意:对于树中相同深度的每个节点来说,它们的高度不一定相同,这取决于每个节点下面的叶子节点的深度。上图中,B 和 C 的深度都是1,但是 B 的高度是1,C 的高度是2。

度的示意图:

在这里插入图片描述

节点的层次示意图:

在这里插入图片描述
树的概述小编就介绍到这里,如有疑问请留言!!!

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值